Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Ageing Res Rev ; 94: 102194, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218464

RESUMEN

Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.


Asunto(s)
Enfermedades Cardiovasculares , Gotas Lipídicas , Humanos , Gotas Lipídicas/metabolismo , Autofagia , Lípidos , Envejecimiento , Enfermedades Cardiovasculares/metabolismo , Metabolismo de los Lípidos
3.
Nat Rev Mol Cell Biol ; 25(4): 270-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086922

RESUMEN

The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.


Asunto(s)
Adipocitos Blancos , Obesidad , Humanos , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología
4.
5.
Biochem Mol Biol Educ ; 51(5): 508-519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37354049

RESUMEN

Graduate programs in medicine and biomedical sciences have been severely impacted by the SARS-CoV-2/COVID-19 pandemic over the last 2 years. Following 2 years since beginning of the pandemic, data on student support, educational and academic performance as well as sentiment on changes to educational programs are starting to emerge. We performed and compared results of two cross-sectional surveys of Swedish and U.S.-based medical and biomedical graduate students on how the pandemic has affected their studies, research productivity and career trajectory. Students were also asked to assess support provided by the university and supervisors. The surveys also captured student demographics and a range of other factors, such as pressures brought on by caretaking and financial responsibilities. We analyzed answers from 264 and 106 students attending graduate programs in universities in Sweden and the United States, respectively. U.S.-based students faced more severe restrictions on their research program compared to students in Sweden, reporting more delays in productivity, scientific output and graduation, and increased worries about their career trajectory. Swedish students had more caretaking responsibilities, although these did not cause any delays in graduation. While support by universities and supervisors was comparable between the countries, financial worries and mental health concerns were particularly prominent in the U.S. cohort. Student performance and outlook was hugely dependent on the breadth of the restrictions and the available support. Besides the governmental and university-led approach to counter the pandemic, societal differences also played a role in how well students were handling effects of the pandemic.


Asunto(s)
COVID-19 , Humanos , Estados Unidos/epidemiología , Estudios Transversales , Suecia/epidemiología , COVID-19/epidemiología , Pandemias , SARS-CoV-2 , Estudiantes
6.
Curr Opin Genet Dev ; 80: 102057, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37247571

RESUMEN

White adipocytes are highly specialized, lipid-storing cells. Their unique characteristics, including their large cell size and high buoyancy, have made adipocytes hard to study in vitro. Most traditional monolayered adipocyte culture models also poorly reflect the morphology and expression of their mature counterparts. The recent invent of 3D adipocyte cultures seems to circumvent many of these shortcomings, and holds promise of improved adipocyte studies in vitro. Notable advances include vascularized and immunocompetent 3D adipose tissue models and organ-on-a-chip models. This short review aims to highlight some of the most recent advances, as well as discussing what challenges still lie ahead in order to develop culture models that are easily applicable, while adequately reflecting the characteristics of human adipose tissue.


Asunto(s)
Adipocitos , Tejido Adiposo , Humanos , Adipocitos/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/genética
7.
Front Cell Dev Biol ; 10: 1003118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187476

RESUMEN

The prevalence of obesity and metabolic diseases continues to rise, which has led to an increased interest in studying adipose tissue to elucidate underlying disease mechanisms. The use of genetic mouse models has been critical for understanding the role of specific genes for adipose tissue function and the tissue's impact on other organs. However, mouse adipose tissue displays key differences to human fat, which has led, in some cases, to the emergence of some confounding concepts in the adipose field. Such differences include the depot-specific characteristics of visceral and subcutaneous fat, and divergences in thermogenic fat phenotype between the species. Adipose tissue characteristics may therefore not always be directly compared between species, which is important to consider when setting up new studies or interpreting results. This mini review outlines our current knowledge about the cell biological differences between human and mouse adipocytes and fat depots, highlighting some examples where inadequate knowledge of species-specific differences can lead to confounding results, and presenting plausible anatomic explanations that may underlie the differences. The article thus provides critical insights and guidance for researchers working primarily with only human or mouse fat tissue, and may contribute to new ideas or concepts in the important and evolving field of adipose biology.

8.
Adipocyte ; 11(1): 413-419, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35894386

RESUMEN

With obesity and its comorbidities continuing to rise, we urgently need to improve our understanding of what mechanisms trigger the white adipose tissue to become dysfunctional in response to over-feeding. The recent invent of 3D culturing models has produced several noteworthy protocols for differentiating unilocular adipocytes in vitro, promising to revolutionize the obesity research field by providing more representative adipose tissue models for such mechanistic studies. In parallel, these 3D models provide important insights to how profoundly the microenvironment influences adipocyte differentiation and morphology. This commentary highlights some of the most recent 3D models, including human unilocular vascularized adipocyte spheroids (HUVASs), developed by our lab. We discuss recent developments in the field, provide further insights to the importance of the microvasculature for adipocyte maturation, and summarize what challenges remain to be solved before we can achieve a culture model that fully recapitulates all aspects of human white adipocyte biology in vitro. Taken together, the commentary highlights important recent advances regarding 3D adipocyte culturing and underlines the many advantages these models provide over traditional 2D cultures, with the aim of convincing more laboratories to switch to 3D models.


Asunto(s)
Adipocitos , Adipogénesis , Tejido Adiposo/fisiología , Tejido Adiposo Blanco , Humanos , Obesidad
9.
iScience ; 25(7): 104602, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35789845

RESUMEN

Adipose tissue inflammation drives obesity-related cardiometabolic diseases. Enhancing endogenous resolution mechanisms through administration of lipoxin A4, a specialized pro-resolving lipid mediator, was shown to reduce adipose inflammation and subsequently protects against obesity-induced systemic disease in mice. Here, we demonstrate that lipoxins reduce inflammation in 3D-cultured human adipocytes and adipose tissue explants from obese patients. Approximately 50% of patients responded particularly well to lipoxins by reducing inflammatory cytokines and promoting an anti-inflammatory M2 macrophage phenotype. Responding patients were characterized by elevated systemic levels of C-reactive protein, which causes inflammation in cultured human adipocytes. Responders appeared more prone to producing anti-inflammatory oxylipins and displayed elevated prostaglandin D2 levels, which has been interlinked with transcription of lipoxin-generating enzymes. Using explant cultures, this study provides the first proof-of-concept evidence supporting the therapeutic potential of lipoxins in reducing human adipose tissue inflammation. Our data further indicate that lipoxin treatment may require a tailored personalized-medicine approach.

10.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008946

RESUMEN

Obesity is associated with extensive expansion and remodeling of the adipose tissue architecture, including its microenvironment and extracellular matrix (ECM). Although obesity has been reported to induce adipose tissue fibrosis, the composition of the ECM under healthy physiological conditions has remained underexplored and debated. Here, we used a combination of three established techniques (picrosirius red staining, a colorimetric hydroxyproline assay, and sensitive gene expression measurements) to evaluate the status of the ECM in metabolically healthy lean (MHL) and metabolically unhealthy obese (MUO) subjects. We investigated ECM deposition in the two major human adipose tissues, namely the omental and subcutaneous depots. Biopsies were obtained from the same anatomic region of respective individuals. We found robust ECM deposition in MHL subjects, which correlated with high expression of collagens and enzymes involved in ECM remodeling. In contrast, MUO individuals showed lower expression of ECM components but elevated levels of ECM cross-linking and adhesion proteins, e.g., lysyl oxidase and thrombospondin. Our data suggests that subcutaneous fat is more prone to express proteins involved in ECM remodeling than omental adipose tissues. We conclude that a more dynamic ability to deposit and remodel ECM may be a key signature of healthy adipose tissue, and that subcutaneous fat may adapt more readily to changing metabolic conditions than omental fat.


Asunto(s)
Tejido Adiposo/metabolismo , Matriz Extracelular/metabolismo , Expresión Génica , Epiplón/metabolismo , Grasa Subcutánea/metabolismo , Adulto , Biomarcadores , Colágeno/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Especificidad de Órganos/genética , ARN Mensajero/genética , Sensibilidad y Especificidad
11.
Obes Rev ; 23(4): e13403, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34866318

RESUMEN

The prevalence of obesity and its associated pathologies continue to increase, which has led to a renewed interest in our major weight-regulating organ, the white adipose tissue. It has become clear that its development, expansion, and physiological function depend on proper crosstalk between each of its cellular constituents, with a central role for the vascular endothelium lining the blood vessels. Although first considered a mere barrier, the endothelium has emerged as a dynamic unit modulating many critical adipose tissue functions. It not only oversees the uptake of all nutrients to be stored in the adipocytes but also provides an important growth niche for adipocyte progenitors and regulates the expandability of the tissue during overfeeding and obesity. In this review, we describe the reciprocal relationship between endothelial cells, adipocytes, and obesity. We present recent studies that support an important role for endothelial cells as central mediators of many of the physiological and pathological functions of the adipose tissue and highlight several unknown aspects of adipose tissue vascular biology. This new perspective could present exciting opportunities to develop new therapeutic approaches against obesity-related pathologies and is thus of great interest in our increasingly obese society.


Asunto(s)
Tejido Adiposo , Células Endoteliales , Adipocitos/fisiología , Tejido Adiposo/patología , Tejido Adiposo Blanco/patología , Células Endoteliales/patología , Humanos , Obesidad
12.
J Physiol ; 600(4): 869-883, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34387376

RESUMEN

KEY POINTS: Adipocyte enlargement is a key feature of obesity and associated with insulin resistance and metabolic disease The cause and consequences of adipocyte enlargement have remained hard to study in vitro due to a lack of human cell models with representative morphology This paper provides an easily set up spheroid culture method, HUVAS (human unilocular vascularized adipocyte spheroids), for the differentiation and culturing of human adipocytes with a more unilocular morphology We show that providing adipocyte progenitors with a vascular differentiation niche is key for achieving in vitro differentiated adipocytes with large lipid droplets Lipid treatment of the HUVAS spheroids can further adipocyte enlargement and induce cellular dysfunction, mimicking the in vivo effects of weight gain The model will allow a wider research community to perform mechanistic studies of the factors impacting on human adipocyte differentiation and growth, increasing our understanding of how obesity develops and why it has such detrimental consequences on whole body metabolism ABSTRACT: The rise in obesity prevalence has created an urgent need for new and improved methods to study human adipocytes and the pathogenic effects of weight gain in vitro. Despite the proven advantage of culturing adipocyte progenitors as 3D structures, the majority of studies continue to use traditional 2D cultures which result in small, multilocular adipocytes with poor representability. We hypothesized that providing differentiating pre-adipocytes with a vascular growth niche would mimic in vivo adipogenesis and improve the differentiation into unilocular adipocytes. Here we present HUVAS (human unilocular vascularized adipocyte spheroids), a simple, easily applicable culture protocol that allows for the differentiation of human adipocytes with a more unilocular morphology and larger lipid droplets than previous protocols. Moreover, we offer a protocol for inducing adipocyte enlargement in vitro, resulting in larger lipid droplets and development of several key features of adipocyte dysfunction, including altered adipokine secretion, impaired lipolysis and insulin resistance. Taken together, our HUVAS model offers an improved culture system for studying the cellular and molecular mechanisms causing metabolic dysfunction and inflammation in human adipose tissue during weight gain.


Asunto(s)
Adipocitos , Tejido Adiposo , Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Diferenciación Celular , Humanos , Aumento de Peso
13.
Nat Med ; 27(11): 1941-1953, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34608330

RESUMEN

Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.


Asunto(s)
Adipocitos/metabolismo , Ciclo Celular/fisiología , Senescencia Celular/fisiología , Hiperinsulinismo/patología , Obesidad/patología , Tejido Adiposo/metabolismo , Diferenciación Celular/fisiología , Ciclina D1/metabolismo , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología
14.
Front Res Metr Anal ; 6: 594424, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041435

RESUMEN

Expectations of fair competition underlie the assumption that academia is a meritocracy. However, bias may reinforce gender inequality in peer review processes, unfairly eliminating outstanding individuals. Here, we ask whether applicant gender biases peer review in a country top ranked for gender equality. We analyzed peer review assessments for recruitment grants at a Swedish medical university, Karolinska Institutet (KI), during four consecutive years (2014-2017) for Assistant Professor (n = 207) and Senior Researcher (n = 153). We derived a composite bibliometric score to quantify applicant productivity and compared this score with subjective external (non-KI) peer reviewer scores of applicants' merits to test their association for men and women, separately. To determine whether there was gender segregation in research fields, we analyzed publication list MeSH terms, for men and women, and analyzed their overlap. There was no gendered MeSH topic segregation, yet men and women with equal merits are scored unequally by reviewers. Men receive external reviewer scores resulting in stronger associations (steeper slopes) between computed productivity and subjective external reviewer scores, meaning that peer reviewers "reward" men's productivity with proportional merit scores. However, women applying for assistant professor or senior researcher receive only 32 or 92% of the score men receive, respectively, for each additional composite bibliometric score point. As productivity increases, the differences in merit scores between men and women increases. Accumulating gender bias is thus quantifiable and impacts the highest tier of competition, the pool from which successful candidates are ultimately chosen. Track record can be computed, and granting organizations could therefore implement a computed track record as quality control to assess whether bias affects reviewer assessments.

15.
Cell Rep ; 27(1): 213-225.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30943403

RESUMEN

White adipose tissue (WAT) is a central factor in the development of type 2 diabetes, but there is a paucity of translational models to study mature adipocytes. We describe a method for the culture of mature white adipocytes under a permeable membrane. Compared to existing culture methods, MAAC (membrane mature adipocyte aggregate cultures) better maintain adipogenic gene expression, do not dedifferentiate, display reduced hypoxia, and remain functional after long-term culture. Subcutaneous and visceral adipocytes cultured as MAAC retain depot-specific gene expression, and adipocytes from both lean and obese patients can be cultured. Importantly, we show that rosiglitazone treatment or PGC1α overexpression in mature white adipocytes induces a brown fat transcriptional program, providing direct evidence that human adipocytes can transdifferentiate into brown-like adipocytes. Together, these data show that MAAC are a versatile tool for studying phenotypic changes of mature adipocytes and provide an improved translational model for drug development.


Asunto(s)
Adipocitos Marrones/fisiología , Adipocitos Blancos/citología , Adipocitos Blancos/fisiología , Adipogénesis/fisiología , Transdiferenciación Celular , Cultivo Primario de Células/métodos , Adipocitos Marrones/citología , Animales , Transdiferenciación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Membranas Artificiales , Ratones , Células RAW 264.7
16.
Cell Rep ; 24(10): 2746-2756.e5, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184507

RESUMEN

Adipocytes, once considered simple lipid-storing cells, are rapidly emerging as complex cells with many biologically diverse functions. A powerful high-throughput method for analyzing single cells is flow cytometry. Several groups have attempted to analyze and sort freshly isolated adipocytes; however, using an adipocyte-specific reporter mouse, we demonstrate that these studies fail to detect the majority of white adipocytes. We define critical settings required for adipocyte flow cytometry and provide a rigid strategy for analyzing and sorting white and brown adipocyte populations. The applicability of our protocol is shown by sorting mouse adipocytes based on size or UCP1 expression and demonstrating that a subset of human adipocytes lacks the ß2-adrenergic receptor, particularly in the insulin-resistant state. In conclusion, the present study confers key technological insights for analyzing and sorting mature adipocytes, opening up numerous downstream research applications.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Citometría de Flujo/métodos , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Humanos , Ratones , Proteína Desacopladora 1/metabolismo
17.
Cell Tissue Res ; 365(1): 51-63, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26928042

RESUMEN

Metabolic diseases, such as obesity and diabetes, are a serious burden for the health system. Vascular endothelial growth factor (VEGF)-B has been shown to regulate tissue uptake and accumulation of fatty acids and is thus involved in these metabolic diseases. However, the cell-type-specific expression pattern of Vegfb and its receptor (VEGFR1, gene Flt1) remains unclear. We explore the expression of Vegfb and Flt1 in the murine heart, lung and kidney by utilizing ß-galactosidase knock-in mouse models and combining the analysis of reporter gene expression and immunofluorescence microscopy. Furthermore, Flt1 heterozygous mice were analyzed with regard to muscular fatty acid accumulation and peripheral insulin sensitivity. Throughout the heart, Vegfb expression was found in cardiomyocytes with a postnatal ventricular shift corresponding to known changes in energy requirements. Vegfb expression was also found in the pulmonary myocardium of the lung and in renal epithelial cells of the thick ascending limb of Henle's loop, the connecting tubule and the collecting duct. In all analyzed organs, VEGFR1 expression was restricted to endothelial cells. We also show that reduced expression of VEGFR1 resulted in decreased cardiac fatty acid accumulation and increased peripheral insulin sensitivity, possibly as a result of attenuated VEGF-B/VEGFR1 signaling. Our data therefore support a tightly controlled, paracrine signaling mechanism of VEGF-B to VEGFR1. The identified cell-specific expression pattern of Vegfb and Flt1 might form the basis for the development of cell-type-targeted research models and contributes to the understanding of the physiological and pathological role of VEGF-B/VEGFR1 signaling.


Asunto(s)
Corazón/fisiología , Riñón/metabolismo , Pulmón/metabolismo , Factor B de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Epiteliales/metabolismo , Heterocigoto , Riñón/citología , Pulmón/irrigación sanguínea , Ratones Endogámicos C57BL , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fenotipo , Venas Pulmonares/citología , Venas Pulmonares/metabolismo
18.
Diabetes ; 65(4): 861-73, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26822083

RESUMEN

Vascular endothelial growth factor (VEGF) B belongs to the VEGF family, but in contrast to VEGF-A, VEGF-B does not regulate blood vessel growth. Instead, VEGF-B controls endothelial fatty acid (FA) uptake and was identified as a target for the treatment of type 2 diabetes. The regulatory mechanisms controlling Vegfb expression have remained unidentified. We show that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) together with estrogen-related receptor α (ERR-α) regulates expression of Vegfb Mice overexpressing PGC-1α under the muscle creatine kinase promoter (MPGC-1αTG mice) displayed increased Vegfb expression, and this was accompanied by increased muscular lipid accumulation. Ablation of Vegfb in MPGC-1αTG mice fed a high-fat diet (HFD) normalized glucose intolerance, insulin resistance, and dyslipidemia. We suggest that VEGF-B is the missing link between PGC-1α overexpression and the development of the diabetes-like phenotype in HFD-fed MPGC-1αTG mice. The findings identify Vegfb as a novel gene regulated by the PGC-1α/ERR-α signaling pathway. Furthermore, the study highlights the role of PGC-1α as a master metabolic sensor that by regulating the expression levels of Vegfa and Vegfb coordinates blood vessel growth and FA uptake with mitochondrial FA oxidation.


Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Factor B de Crecimiento Endotelial Vascular/genética , Animales , Células COS , Respiración de la Célula/genética , Células Cultivadas , Chlorocebus aethiops , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Factor A de Crecimiento Endotelial Vascular/genética
19.
Am J Physiol Endocrinol Metab ; 308(9): E822-9, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25738783

RESUMEN

Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen and for the distribution of the generated heat to the rest of the body. Therefore, it is fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here, we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel noninvasive method to detect BAT perfusion, we demonstrate that adrenergically stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and therefore, it is not a reliable parameter for the estimation of BAT activation and heat generation.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Norepinefrina/farmacología , Flujo Sanguíneo Regional/efectos de los fármacos , Termogénesis/fisiología , Aclimatación/efectos de los fármacos , Tejido Adiposo Pardo/irrigación sanguínea , Tejido Adiposo Pardo/metabolismo , Adrenérgicos/farmacología , Animales , Composición Corporal/efectos de los fármacos , Composición Corporal/fisiología , Femenino , Hemodinámica/efectos de los fármacos , Flujometría por Láser-Doppler , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Cell Metab ; 19(6): 1034-41, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24814482

RESUMEN

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.


Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Benzamidas/farmacología , Bencimidazoles/farmacología , Caenorhabditis elegans , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasas/biosíntesis , Sirtuina 1/genética , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA