Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(4): e0011424, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38497626

RESUMEN

An enrichment of sulfidic sediments from Zodletone spring was sequenced as a metagenome. Draft genomes representing Cloacimonadota, Deltabacterota, Firmicutes, and Patescibacteria were binned and annotated and will aid functional genomics and cultivation efforts.

2.
Microbiol Resour Announc ; 12(5): e0014523, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37052391

RESUMEN

Desulfomicrobium sp. strain ZS1 is an obligate anaerobic, sulfate-reducing member of the Desulfobacterota from Zodletone Spring, an anoxic sulfide-rich spring in southwestern Oklahoma. Its complete genome was sequenced using a combination of Illumina and Oxford Nanopore platforms and encodes 3,364 proteins and 81 RNAs on a single chromosome.

3.
mBio ; 13(2): e0001622, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35258328

RESUMEN

Life emerged and diversified in the absence of molecular oxygen. The prevailing anoxia and unique sulfur chemistry in the Paleo-, Meso-, and Neoarchean and early Proterozoic eras may have supported microbial communities that differ from those currently thriving on the earth's surface. Zodletone spring in southwestern Oklahoma represents a unique habitat where spatial sampling could substitute for geological eras namely, from the anoxic, surficial light-exposed sediments simulating a preoxygenated earth to overlaid water column where air exposure simulates oxygen intrusion during the Neoproterozoic era. We document a remarkably diverse microbial community in the anoxic spring sediments, with 340/516 (65.89%) of genomes recovered in a metagenomic survey belonging to 200 bacterial and archaeal families that were either previously undescribed or that exhibit an extremely rare distribution on the current earth. Such diversity is underpinned by the widespread occurrence of sulfite, thiosulfate, tetrathionate, and sulfur reduction and the paucity of sulfate reduction machineries in these taxa. Hence, these processes greatly expand lineages mediating reductive sulfur-cycling processes in the tree of life. An analysis of the overlaying oxygenated water community demonstrated the development of a significantly less diverse community dominated by well-characterized lineages and a prevalence of oxidative sulfur-cycling processes. Such a transition from ancient novelty to modern commonality underscores the profound impact of the great oxygenation event on the earth's surficial anoxic community. It also suggests that novel and rare lineages encountered in current anaerobic habitats could represent taxa that once thrived in an anoxic earth but have failed to adapt to earth's progressive oxygenation. IMPORTANCE Life on earth evolved in an anoxic setting; however, the identity and fate of microorganisms that thrived in a preoxygenated earth are poorly understood. In Zodletone spring, the prevailing geochemical conditions are remarkably similar to conditions prevailing in surficial earth prior to oxygen buildup in the atmosphere. We identify hundreds of previously unknown microbial lineages in the spring and demonstrate that these lineages possess the metabolic machinery to mediate a wide range of reductive sulfur processes, with the capacity to respire sulfite, thiosulfate, sulfur, and tetrathionate, rather than sulfate, which is a reflection of the differences in sulfur-cycling chemistry in ancient versus modern times. Collectively, such patterns strongly suggest that microbial diversity and sulfur-cycling processes in a preoxygenated earth were drastically different from the currently observed patterns and that the Great Oxygenation Event has precipitated the near extinction of a wide range of oxygen-sensitive lineages and significantly altered the microbial reductive sulfur-cycling community on earth.


Asunto(s)
Azufre , Tiosulfatos , Humanos , Oxígeno , Filogenia , Sulfatos/metabolismo , Sulfitos , Azufre/metabolismo , Agua
4.
Microbiol Resour Announc ; 10(26): e0041421, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34197190

RESUMEN

We analyzed five metagenome-assembled genomes (MAGs) belonging to the rare, yet-uncultured phylum CSSED10-310 recovered from the anoxic sediments of Zodletone Spring (Oklahoma). Our analysis suggests their potential involvement in sulfite respiration.

5.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30902854

RESUMEN

Recent experimental and bioinformatic advances enable the recovery of genomes belonging to yet-uncultured microbial lineages directly from environmental samples. Here, we report on the recovery and characterization of single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) representing candidate phylum LCP-89, previously defined based on 16S rRNA gene sequences. Analysis of LCP-89 genomes recovered from Zodletone Spring, an anoxic spring in Oklahoma, predicts slow-growing, rod-shaped organisms. LCP-89 genomes contain genes for cell wall lipopolysaccharide (LPS) production but lack the entire machinery for peptidoglycan biosynthesis, suggesting an atypical cell wall structure. The genomes, however, encode S-layer homology domain-containing proteins, as well as machinery for the biosynthesis of CMP-legionaminate, inferring the possession of an S-layer glycoprotein. A nearly complete chemotaxis machinery coupled to the absence of flagellar synthesis and assembly genes argues for the utilization of alternative types of motility. A strict anaerobic lifestyle is predicted, with dual respiratory (nitrite ammonification) and fermentative capacities. Predicted substrates include a wide range of sugars and sugar alcohols and a few amino acids. The capability of rhamnose metabolism is confirmed by the identification of bacterial microcompartment genes to sequester the toxic intermediates generated. Comparative genomic analysis identified differences in oxygen sensitivities, respiratory capabilities, substrate utilization preferences, and fermentation end products between LCP-89 genomes and those belonging to its four sister phyla (Calditrichota, SM32-31, AABM5-125-24, and KSB1) within the broader FCB (Fibrobacteres-Chlorobi-Bacteroidetes) superphylum. Our results provide a detailed characterization of members of the candidate division LCP-89 and highlight the importance of reconciling 16S rRNA-based and genome-based phylogenies.IMPORTANCE Our understanding of the metabolic capacities, physiological preferences, and ecological roles of yet-uncultured microbial phyla is expanding rapidly. Two distinct approaches are currently being utilized for characterizing microbial communities in nature: amplicon-based 16S rRNA gene surveys for community characterization and metagenomics/single-cell genomics for detailed metabolic reconstruction. The occurrence of multiple yet-uncultured bacterial phyla has been documented using 16S rRNA surveys, and obtaining genome representatives of these yet-uncultured lineages is critical to our understanding of the role of yet-uncultured organisms in nature. This study provides a genomics-based analysis highlighting the structural features and metabolic capacities of a yet-uncultured bacterial phylum (LCP-89) previously identified in 16S rRNA surveys for which no prior genomes have been described. Our analysis identifies several interesting structural features for members of this phylum, e.g., lack of peptidoglycan biosynthetic machinery and the ability to form bacterial microcompartments. Predicted metabolic capabilities include degradation of a wide range of sugars, anaerobic respiratory capacity, and fermentative capacities. In addition to the detailed structural and metabolic analysis provided for candidate division LCP-89, this effort represents an additional step toward a unified scheme for microbial taxonomy by reconciling 16S rRNA gene-based and genomics-based taxonomic outlines.


Asunto(s)
Bacterias/genética , Pared Celular/metabolismo , Fermentación , Genoma Bacteriano , Oklahoma , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
6.
Syst Appl Microbiol ; 42(1): 85-93, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30477901

RESUMEN

The accumulation of genomes of uncultured organisms has highlighted the need for devising a taxonomic and nomenclature scheme to validate names and prevent redundancies. We here report on the recovery and analysis of four phylogenetically related genomes recovered from an anoxic sulfide and sulfur-rich spring (Zodletone spring) in southwestern Oklahoma. Phylogenetic analysis based on 120 single copy markers attested to their position as a novel distinct bacterial phylum. Genomic analysis suggests Gram-negative flagellated organisms that possess type IV pili. The organisms are predicted to be rod-shaped, slow-growers, with an anoxic, heterotrophic, and fermentative lifestyle. Predicted substrate utilization pattern includes multiple amino acids, dipeptides, tripeptides, and oligpopeptides; as well as few sugars. Predicted auxotrophies include proline, vitamin B6, lipoic acid, biotin, and vitamin B12. Assessment of the putative global distribution pattern of this novel lineage suggests its preference to anoxic marine, terrestrial, hydrocarbon-impacted, and freshwater habitats. We propose the candidatus name Krumholzibacterium zodletonense gen. nov, sp. nov. for Zgenome0171T, with the genome serving as the type material for the novel family Krumholzibacteriaceae fam. nov., order Krumholzibacteriales ord. nov., class Krumholzibacteria class nov., and phylum Krumholzibacteriota phyl. nov. The type material genome assembly is deposited in GenBank under accession number QTKG01000000.


Asunto(s)
Bacterias Gramnegativas/clasificación , Manantiales Naturales/microbiología , Filogenia , Sulfuros/química , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/aislamiento & purificación , Metagenómica , Manantiales Naturales/química , Oklahoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA