Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 6: 26766, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27230693

RESUMEN

A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells. This pathway is under the control of Mcl-1 and other Bcl-2 family proteins and requires caspase-9, caspase-3/7 and the endonuclease CAD/DFF40. The gradual caspase-dependent loss of the shelterin complex protein TRF2 from telomeres promotes a DDR that involves DNA-dependent protein kinase (DNA-PK). Suppression of mitotic telomere damage by enhanced expression of TRF2, or the inhibition of either caspase-3/7 or DNA-PK during mitotic arrest, promotes subsequent cell survival. Thus, we demonstrate that mitotic stress is characterised by the sub-apoptotic activation of a classical caspase pathway, which promotes telomere deprotection, activates DNA damage signalling, and determines cell fate in response to a prolonged delay in mitosis.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Daño del ADN , Puntos de Control de la Fase M del Ciclo Celular , Telómero/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Caspasa 9/metabolismo , Línea Celular , Supervivencia Celular , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Estrés Fisiológico
2.
Open Biol ; 5(3): 140156, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25761368

RESUMEN

Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.


Asunto(s)
Daño del ADN , Mitosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Histonas/metabolismo , Humanos , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Mitosis/genética , Modelos Biológicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Nocodazol/farmacología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Transducción de Señal , Moduladores de Tubulina/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
J Cell Sci ; 127(Pt 13): 2811-7, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24794496

RESUMEN

Defects in SLX4, a scaffold for DNA repair nucleases, result in Fanconi anemia (FA), due to the defective repair of inter-strand DNA crosslinks (ICLs). Some FA patients have an SLX4 deletion removing two tandem UBZ4-type ubiquitin-binding domains that are implicated in protein recruitment to sites of DNA damage. Here, we show that human SLX4 is recruited to sites of ICL induction but that the UBZ-deleted form of SLX4 in cells from FA patients is not. SLX4 recruitment does not require either the ubiquitylation of FANCD2 or the E3 ligases RNF8, RAD18 and BRCA1. We show that the first (UBZ-1) but not the second UBZ domain of SLX4 binds to ubiquitin polymers, with a preference for K63-linked chains. Furthermore, UBZ-1 is required for SLX4 recruitment to ICL sites and for efficient ICL repair in murine fibroblasts. The SLX4 UBZ-2 domain does not bind to ubiquitin in vitro or contribute to ICL repair, but it is required for the resolution of Holliday junctions in vivo. These data shed light on SLX4 recruitment, and they point to the existence of currently unidentified ubiquitylated ligands and E3 ligases that are crucial for ICL repair.


Asunto(s)
Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Recombinasas/genética , Ubiquitina/metabolismo , Animales , Sitios de Unión , ADN/genética , ADN/metabolismo , Reparación del ADN , Humanos , Ratones , Estructura Terciaria de Proteína , Recombinasas/metabolismo
4.
Nat Genet ; 43(2): 138-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21240277

RESUMEN

DNA interstrand crosslink repair requires several classes of proteins, including structure-specific endonucleases and Fanconi anemia proteins. SLX4, which coordinates three separate endonucleases, was recently recognized as an important regulator of DNA repair. Here we report the first human individuals found to have biallelic mutations in SLX4. These individuals, who were previously diagnosed as having Fanconi anemia, add SLX4 as an essential component to the FA-BRCA genome maintenance pathway.


Asunto(s)
Anemia de Fanconi/genética , Recombinasas/genética , Alelos , Camptotecina/farmacología , Niño , Reactivos de Enlaces Cruzados/farmacología , Reparación del ADN , Relación Dosis-Respuesta a Droga , Proteínas del Choque Térmico HSC70 , Proteínas de Choque Térmico/química , Humanos , Inmunoprecipitación , Masculino , Mitomicina/farmacología , Mutación , Fenotipo
5.
Mol Cell ; 35(1): 116-27, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19595721

RESUMEN

Budding yeast Slx4 interacts with the structure-specific endonuclease Slx1 to ensure completion of ribosomal DNA replication. Slx4 also interacts with the Rad1-Rad10 endonuclease to control cleavage of 3' flaps during repair of double-strand breaks (DSBs). Here we describe the identification of human SLX4, a scaffold for DNA repair nucleases XPF-ERCC1, MUS81-EME1, and SLX1. SLX4 immunoprecipitates show SLX1-dependent nuclease activity toward Holliday junctions and MUS81-dependent activity toward other branched DNA structures. Furthermore, SLX4 enhances the nuclease activity of SLX1, MUS81, and XPF. Consistent with a role in processing recombination intermediates, cells depleted of SLX4 are hypersensitive to genotoxins that cause DSBs and show defects in the resolution of interstrand crosslink-induced DSBs. Depletion of SLX4 causes a decrease in DSB-induced homologous recombination. These data show that SLX4 is a regulator of structure-specific nucleases and that SLX4 and SLX1 are important regulators of genome stability in human cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Endonucleasas/metabolismo , Recombinasas/metabolismo , Western Blotting , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Unión Proteica , ARN Interferente Pequeño/genética , Recombinasas/genética , Transfección , Técnicas del Sistema de Dos Híbridos
6.
Eukaryot Cell ; 7(2): 202-11, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18083827

RESUMEN

Eimeria tenella is the causative agent of coccidiosis in poultry. Infection of the chicken intestine begins with ingestion of sporulated oocysts releasing sporocysts, which in turn release invasive sporozoites. The monoclonal antibody E2E5 recognizes wall-forming body type II (WFBII) in gametocytes and the WFBII-derived inner wall of oocysts. Here we describe that this antibody also binds to the stieda body of sporocysts and significantly impairs in vitro excystation of sporozoites. Using affinity chromatography and protein sequence analysis, E2E5 is shown to recognize EtGAM56, the E. tenella ortholog of the Eimeria maxima gametocyte-specific GAM56 protein. In addition, this antibody was used to screen a genomic phage display library presenting E. tenella antigens as fusion proteins with the gene VIII product on the surfaces of phagemid particles and identified the novel 22-kDa histidine- and proline-rich protein EtGAM22. The Etgam22 mRNA is expressed predominantly at the gametocyte stage, as detected by Northern blotting. Southern blot analysis in combination with data from the E. tenella genome project revealed that Etgam22 is an intronless multicopy gene, with approximately 12 to 22 copies in head-to-tail arrangement. Conspicuously, Etgam56 is also intronless and is localized adjacent to another gam56-like gene, Etgam59. Our data suggest that amplification is common for genes encoding oocyst wall proteins.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Eimeria tenella/inmunología , Oocistos/inmunología , Proteínas Protozoarias/inmunología , Esporozoítos/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Southern Blotting , Western Blotting , Pollos , Cromatografía de Afinidad , Clonación Molecular , Coccidiosis/parasitología , Eimeria tenella/crecimiento & desarrollo , Eimeria tenella/metabolismo , Técnica del Anticuerpo Fluorescente , Masculino , Datos de Secuencia Molecular , Oocistos/crecimiento & desarrollo , Biblioteca de Péptidos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA