Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
ACS Appl Mater Interfaces ; 16(21): 27694-27704, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747638

RESUMEN

To achieve multifunctional properties using nanocomposites, selectively locating nanofillers in specific areas by tailoring a mixture of two immiscible polymers has been widely investigated. Forming a phase-separated structure from entirely miscible molecules is rarely reported, and the related mechanisms to govern the formation of assemblies from molecules have not been fully resolved. In this work, a novel method and the underlying mechanism to fabricate self-assembling, bicontinuous, biphasic structures with localized domains made up of amine-functionalized graphene nanoplatelets are presented, involving the tailoring of compositions in a liquid processable multicomponent epoxy blend. Kinetics studies were carried out to investigate the differences in reactivity of various epoxy-hardener pairs. Molecular dynamics simulations and in situ optical photothermal infrared spectroscopy measurements revealed the trajectories of different components during the early stages of polymerization, supporting the migration (phase behavior) of each component during the curing process. Confirmed by the phase structure and the correlated chemical maps down to the submicrometer level, it is believed that the bicontinuous phase separation is driven by the change of the miscibility between various building blocks forming during polymerization, leading to the formation of nanofiller domains. The proposed morphology evolution mechanism is based on combining solubility parameter calculations with kinetics studies, and preliminary experiments are performed to validate the applicability of the mechanism of selectively locating nanofillers in the phase-separated structure. This provides a simple yet sophisticated engineering model and a roadmap to a mechanism for fabricating phase-separated structures with nanofiller domains in nanocomposite films.

2.
Polymers (Basel) ; 16(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675008

RESUMEN

The aim of this research is to investigate basalt as a natural mineral-based fibre together with a vitrimeric resin as a sustainable alternative to standard composite materials. Vitrimers combine the properties of thermoset and thermoplastic polymers, enabling the repair of specimens and hence prolonging the lifetime of the composite material. The micro-mechanical characteristics between the basalt fibres and the vitrimer resin are reported and shown to match those of a standard Skyflex K51 epoxy resin. Discontinuous (4 mm) basalt fibres were employed to produce aligned discontinuous fibre-reinforced composites (ADFRCs) using the high-performance discontinuous fibre (HiPerDiF) technology. The mechanical characteristics of the laminates were investigated through tensile testing and the fracture zones were analysed under a scanning electron microscope. By normalising the results by their respective fibre volume fraction, it was discovered that the vitrimer-basalt ADFRCs exhibited, on average, a 4% higher strength and a 25% higher stiffness compared to their basalt epoxy counterparts. The repair potential of the vitrimer ADFRC specimens was explored during low-temperature compression repair. Two approaches were tested using double-sided local- and full-patch repair. Both successfully recovered a significant amount of their prime strength. In conclusion, the potential of the sustainable vitrimer-basalt composite is shown by its competitive mechanical performance. Combining this with the manufacturing flexibility, repair potential, and recyclability of the material, the vitrimer-basalt composite seems to be a competitive alternative to standard glass epoxies.

3.
ACS Appl Polym Mater ; 5(12): 10404-10415, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38094598

RESUMEN

A benzoxazine system is presented combining liquid cardanol-based benzoxazine (CA-a) and an effective initiator (3,3'-thiodipropionic acid, TDA) to bisphenol A-based benzoxazine (BA-a). The resultant mixture of monomeric precursors shows excellent fluidity and a relatively low peak polymerization temperature of around 200 °C. Moreover, the cured polybenzoxazine displays a high thermal decomposition temperature (Td,5% > 330 °C), a moderately high glass transition temperature (∼148 °C), and robust mechanical strength (storage modulus ∼ 2.8 GPa) comparable to those of the polybenzoxazine homopolymer obtained by curing BA-a. A comprehensive investigation into the microstructure and curing kinetics has also been conducted on the system, offering an extensive background for future studies.

4.
Materials (Basel) ; 16(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37110116

RESUMEN

DcAFF (discontinuous aligned fibre filament) is a novel material for fused filament fabrication (FFF) 3D printing made of highly aligned discontinuous fibres produced using high performance discontinuous fibre (HiPerDiF) technology. It reinforces a thermoplastic matrix to provide high mechanical performance and formability. Accurate printing of DcAFF poses a challenge, especially for complex geometries, because: (i) there is a discrepancy between the path where the filament experiences the adhering pressure from the filleted nozzle and the nozzle path; and (ii) the rasters display poor adhesion to the build platform immediately after deposition, which causes the filament to be dragged when the printing direction changes. This paper explains the implication of these phenomena on steering capabilities and examines the techniques for improving DcAFF printing accuracy. In the first approach, the machine parameters were adjusted to improve the quality of the sharp turning angle without changing the desired path, but this showed insignificant effects in terms of precision improvements. In the second approach, a printing path modification with a compensation algorithm was introduced. The nature of the inaccuracy of the printing at the turning point was studied with a first-order lag relationship. Then the equation to describe the deposition raster inaccuracy was determined. A proportional-integral (PI) controller was added to the equation to calculate the nozzle movement in order to bring the raster back to the desired path. The applied compensation path is shown to give an accuracy improvement in curvilinear printing paths. This is particularly beneficial when printing larger circular diameter curvilinear printed parts. The developed printing approach can be applied with other fibre reinforced filaments to achieve complex geometries.

5.
Materials (Basel) ; 15(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500194

RESUMEN

This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile.

6.
Anal Chem ; 94(34): 11848-11855, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35972471

RESUMEN

By incorporating 1-(2-aminoethyl)piperazine (AEPIP) into a commercial epoxy blend, a bicontinuous microstructure is produced with the selective localization of amine-functionalized graphene nanoplatelets (A-GNPs). This cured blend underwent self-assembly, and the morphology and topology were observed via spectral imaging techniques. As the selective localization of nanofillers in thermoset blends is rarely achieved, and the mechanism remains largely unknown, the optical photothermal infrared (O-PTIR) spectroscopy technique was employed to identify the compositions of microdomains. The A-GNP tends to be located in the region containing higher concentrations of both secondary amine and secondary alcohol; additionally, the phase morphology was found to be influenced by the amine concentration. With the addition of AEPIP, the size of the graphene domains becomes smaller and secondary phase separation is detected within the graphene domain evidenced by the chemical contrast shown in the high-resolution chemical map. The corresponding chemical mapping clearly shows that this phenomenon was mainly induced by the chemical contrast in related regions. The findings reported here provide new insight into a complicated, self-assembled nanofiller domain formed in a multicomponent epoxy blend, demonstrating the potential of O-PTIR as a powerful and useful approach for assessing the mechanism of selectively locating nanofillers in the phase structure of complex thermoset systems.

7.
Materials (Basel) ; 14(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920098

RESUMEN

Sustainable fibre reinforced polymer composites have drawn significant attention in many industrial sectors as a means for overcoming issues with end-of-life regulations and other environmental concerns. Plant based natural fibres are considered to be the most suitable reinforcement for sustainable composites since they are typically from renewable resources, are cheap, and are biodegradable. In this study, a number of plant based natural fibres-curaua, flax, and jute fibres-are used to reinforce epoxy, poly(lactic acid) (PLA), and polypropylene (PP) matrices to form aligned discontinuous natural fibre reinforced composites (ADNFRC). The novel HiPerDiF (high performance discontinuous fibre) method is used to produce high performance ADNFRC. The tensile mechanical, fracture, and physical (density, porosity, water absorption, and fibre volume fraction) properties of these composites are reported. In terms of stiffness, epoxy and PP ADNFRC exhibit similar properties, but epoxy ADNFRC shows increased strength compared to PP ADNFRC. It was found that PLA ADNFRC had the poorest mechanical performance of the composites tested, due principally to the limits of the polymer matrix. Moreover, curaua, flax (French origin), and jute fibres are found to be promising reinforcements owing to their mechanical performance in epoxy and PP ADNFRC. However, only flax fibre with desirable fibre length is considered to be the best reinforcement constituent for future sustainable ADNFRC studies in terms of mechanical performance and current availability on the market, particularly for the UK and EU.

8.
Materials (Basel) ; 13(9)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375396

RESUMEN

Growing environmental concerns and stringent waste-flow regulations make the development of sustainable composites a current industrial necessity. Natural fibre reinforcements are derived from renewable resources and are both cheap and biodegradable. When they are produced using eco-friendly, low hazard processes, then they can be considered as a sustainable source of fibrous reinforcement. Furthermore, their specific mechanical properties are comparable to commonly used, non-environmentally friendly glass-fibres. In this study, four types of abundant natural fibres (jute, kenaf, curaua, and flax) are investigated as naturally-derived constituents for high performance composites. Physical, thermal, and mechanical properties of the natural fibres are examined to evaluate their suitability as discontinuous reinforcements whilst also generating a database for material selection. Single fibre tensile and microbond tests were performed to obtain stiffness, strength, elongation, and interfacial shear strength of the fibres with an epoxy resin. Moreover, the critical fibre lengths of the natural fibres, which are important for defining the mechanical performances of discontinuous and short fibre composites, were calculated for the purpose of possible processing of highly aligned discontinuous fibres. This study is informative regarding the selection of the type and length of natural fibres for the subsequent production of discontinuous fibre composites.

9.
Materials (Basel) ; 13(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230820

RESUMEN

In order to increase the material throughput of aligned discontinuous fibre composites using technologies such as HiPerDiF, stability of the carbon fibres in an aqueous solution needs to be achieved. Subsequently, a range of surfactants, typically employed to disperse carbon-based materials, have been assessed to determine the most appropriate for use in this regard. The optimum stability of the discontinuous fibres was observed when using the anionic surfactant, sodium dodecylbenzene sulphonate, which was superior to a range of other non-ionic and anionic surfactants, and single-fibre fragmentation demonstrated that the employment of sodium dodecylbenzene sulphonate did not affect the interfacial adhesion between fibres. Rheometry was used to complement the study, to understand the potential mechanisms of the improved stability of discontinuous fibres in aqueous suspension, and it led to the understanding that the increased viscosity was a significant factor. For the shear rates employed, fibre deformation was neither expected nor observed.

10.
Polymers (Basel) ; 12(4)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316377

RESUMEN

Materials science is beginning to adopt computational simulation to eliminate laboratory trial and error campaigns-much like the pharmaceutical industry of 40 years ago. To further computational materials discovery, new methodology must be developed that enables rapid and accurate testing on accessible computational hardware. To this end, the authors utilise a novel methodology concept of intermediate molecules as a starting point, for which they propose the term 'symthon'[a] rather than conventional monomers. The use of symthons eliminates the initial monomer bonding phase, reducing the number of iterations required in the simulation, thereby reducing the runtime. A novel approach to molecular dynamics, with an NVT (Canonical) ensemble and variable unit cell geometry, was used to generate structures with differing physical and thermal properties. Additional script methods were designed and tested, which enabled a high degree of cure in all sampled structures. This simulation has been trialled on large-scale atomistic models of phenolic resins, based on a range of stoichiometric ratios of formaldehyde and phenol. Density and glass transition temperature values were produced, and found to be in good agreement with empirical data and other simulated values in the literature. The runtime of the simulation was a key consideration in script design; cured models can be produced in under 24 h on modest hardware. The use of symthons has been shown as a viable methodology to reduce simulation runtime whilst generating accurate models.

11.
Molecules ; 25(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218256

RESUMEN

The preparation of ultra-thin CFRP laminates, which incorporate a cycloaliphatic epoxy resin reinforced with polyhedral oligomeric silsesquioxane (POSS) reagent nanofiller, using out-of-autoclave procedure is reported. The influence of the amount of POSS within the laminate on the mechanical properties and surface roughness of the laminates is analysed before and after exposure to atomic oxygen (AO) to simulate the effects of low Earth orbit (LEO). The addition of 5 wt% POSS to the base epoxy leads to an increase in both flexural strength and modulus, but these values begin to fall as the POSS content rises, possibly due to issues with agglomeration. The addition of POSS offers improved resistance against AO degradation with the laminates containing 20 wt% POSS demonstrating the lowest erosion yield (1.67 × 10-24 cm2/atom) after the equivalent of a period of 12 months in a simulated LEO environment. Exposure to AO promotes the formation of a silicon-rich coating layer on the surface of the laminate, which in turn reduces roughness and increases stiffness, as evidenced by measurements of flexural properties and spectral data after exposure.


Asunto(s)
Resinas Epoxi/química , Nanocompuestos/química , Oxígeno/química , Fibra de Carbono/química , Ciclización , Módulo de Elasticidad , Compuestos de Organosilicio/química , Plásticos/química , Análisis Espectral , Propiedades de Superficie
12.
Polymers (Basel) ; 11(4)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974878

RESUMEN

The reaction of phenyl glycidyl ether (PGE) with 1-ethyl-3-methylimidazolium acetateand 1-ethyl-3-methylimidazolium thiocyanate to initiate the polyetherification reaction wasexamined using thermal and spectral analysis techniques. The influence of the nucleophilicity of theanions on the deprotonation of the 1-ethyl-3-methylimidazolium cation determined the reactionpathway. The thermal degradation of the ionic liquid liberated the acetate ion and led, subsequently,to the deprotonation of the acidic proton in the imidazole ring. Thus, polymerisation of PGEoccurred via a carbene intermediate. The more nucleophilic thiocyanate anion was not sufficientlybasic to deprotonate the 1-ethyl-3-methylimidazolium cation, and thus proceeded through directreaction with the PGE, unless the temperature was elevated and a competing carbene mechanismensued.

13.
Polymers (Basel) ; 10(11)2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30961175

RESUMEN

A series of commercial difunctional benzoxazine monomers are characterized using thermal and thermo-mechanical techniques before constructing representative polymer networks using molecular simulation techniques. Good agreement is obtained between replicate analyses and for the kinetic parameters obtained from differential scanning calorimetry data (and determined using the methods of Kissinger and Ozawa). Activation energies range from 85 to 108 kJ/mol (Kissinger) and 89 to 110 kJ/mol (Ozawa) for the uncatalyzed thermal polymerization reactions, which achieve conversions of between 85% and 97%. Glass transition temperatures determined from differential scanning calorimetry and dynamic mechanical thermal analysis are comparable, ranging from BA-a (151 °C, crosslink density 3.6 × 10-3 mol cm-3) containing the bisphenol A moiety to BP-a, based on a phenolphthalein bridge (239 to 256 °C, crosslink density 5.5 to 18.4 × 10-3 mol cm-3, depending on formulation). Molecular dynamics simulations of the polybenzoxazines generally agree well with empirical data, indicating that representative networks have been modelled.

14.
RSC Adv ; 8(63): 36264-36271, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-35558471

RESUMEN

For the first time we present nanoindentation analysis of charred, cured aromatic cyanate esters, which exhibit outstanding mechanical properties when analysed under applied loads of 0.1-300 mN. Following charring (900 °C for 10 minutes to achieve graphitised structures), the samples display a remarkable combination of a modulus of elasticity of around 25 GPa and nanohardness of 300 kgf mm-2, making them some 30-40% stiffer than bone and practically as hard as tooth enamel. At the same time we find that under the same conditions the chars are highly resilient, displaying complete elastic recovery with very little plastic deformation. When cured in the presence of copper(ii) acetylacetonate (200 ppm) in dodecylphenol (1% w/v active copper suspension) to form a polycyanurate, compound (2) forms a dense, consolidated structure compared with compound (1) under the same conditions. At high magnification, the presence of a nanoscale, fibrillar structure is observed, accounting for the high resilience.

15.
J Colloid Interface Sci ; 508: 28-38, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28818654

RESUMEN

BACKGROUND AND HYPOTHESIS: Humic acid (HA) is of considerable environmental significance, being a major component of soil, as well as being considered for application in other technological areas. However, its structure and colloidal properties continue to be the subject of debate, largely owing to its molecular complexity and association with other humic substances and mineral matter. As a class, HA is considered to comprise supramolecular assemblies of heterogeneous species, and herein we consider a simple route for the separation of some HA sub-fractions. EXPERIMENTS: A commercial HA sample from Sigma-Aldrich has been fractionated into two soluble (S1, S2) and two insoluble (I1, I2) fractions by successive dissolution in deionized water at near-neutral pH. These sub-fractions have been characterized by solution and solid-state approaches. FINDINGS: Using this simple approach, the HA has been shown to contain non-covalently bonded species with different polarity and water solubility. The soluble and insoluble fractions have very different chemical structures, as revealed particularly by their solid-state properties (13C NMR and IR spectroscopy, and TGA); in particular, S1 and S2 are characterized by higher carbonyl and aromatic contents, compared with I1 and I2. As shown by solution SAXS measurements and AFM, the soluble fractions behave as hydrophilic colloidal aggregates of at least 50nm diameter.

16.
ACS Appl Mater Interfaces ; 8(31): 20319-28, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27377708

RESUMEN

We describe a new class of negative Poisson's ratio (NPR) open cell PU-PE foams produced by blocking the shape memory effect in the polymer. Contrary to classical NPR open cell thermoset and thermoplastic foams that return to their auxetic phase after reheating (and therefore limit their use in technological applications), this new class of cellular solids has a permanent negative Poisson's ratio behavior, generated through multiple shape memory (mSM) treatments that lead to a fixity of the topology of the cell foam. The mSM-NPR foams have Poisson's ratio values similar to the auxetic foams prior their return to the conventional phase, but compressive stress-strain curves similar to the ones of conventional foams. The results show that by manipulating the shape memory effect in polymer microstructures it is possible to obtain new classes of materials with unusual deformation mechanisms.

17.
Polymers (Basel) ; 8(5)2016 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30979257

RESUMEN

This study uses the Molecular Operating Environment software (MOE) to generate models to calculate the char yield of polybenzoxazines (PBz). A series of benzoxazine (Bz) monomers were constructed to which a variety of parameters relating to the structure (e.g., water accessible surface, negative van der Waals surface area and hydrophobic volume, etc.) were obtained and a quantitative structure property relationships (QSPR) model was generated. The model was used to generate data for new Bz monomers with desired properties and a comparison was made of predictions based on the QSPR model with the experimental data. This study shows the quality of predictive models and confirms how useful computational screening is prior to synthesis.

18.
Macromolecules ; 46(13): 5117-5132, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23853391

RESUMEN

Three bis-benzoxazine monomers based on the aniline derivatives of bisphenol A (BA-a), bisphenol F (BF-a), and 3,3'-thiodiphenol (BT-a) are examined using a variety of spectroscopic, chromatographic, and thermomechanical techniques. The effect on the polymerization of the monomers is compared using two common compounds, 3,3'-thiodiphenol (TDP) and 3,3'-thiodipropionic acid (TDA), at a variety of loadings. It is found that the diacid has a greater effect on reducing the onset of polymerization and increasing cross-link density and Tg for a given benzoxazine. However, the addition of >5 wt % of the diacid had a detrimental effect on the cross-link density, Tg, and thermal stability of the polymer. The kinetics of the polymerization of BA-a were found to be well described using an autocatalytic model for which values of n = 1.64 and m = 2.31 were obtained for the early and later stages of reaction (activation energy = 81 kJ/mol). Following recrystallization the same monomer yielded values n = 1.89, m = 0.89, and Ea = 94 kJ/mol (confirming the influence of higher oligomers on reactivity). The choice of additive (in particular the magnitude of its pKa) appears to influence the nature of the network formation from a linear toward a more clusterlike growth mechanism.

19.
PLoS One ; 8(4): e61179, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23577206

RESUMEN

Molecular simulation is becoming an important tool for both understanding polymeric structures and predicting their physical and mechanical properties. In this study, temperature ramped molecular dynamics simulations are used to predict two physical properties (i.e., glass transition temperature and thermal degradation temperature) of a previously synthesised and published telechelic benzoxazine. Plots of simulated density versus temperature show decreases in density within the same temperature range as experimental values for the thermal degradation. The predicted value for the thermal degradation temperature for the cured polybenzoxazine based on the telechelic polyetherketone (PEK) monomer was ca. 400°C, in line with the experimental thermal degradation temperature range of 450°C to 500°C. Mechanical Properties of both the unmodified PEK and the telechelic benzoxazines are simulated and compared to experimental values (where available). The introduction of the benoxazine moieties are predicted to increase the elastic moduli in line with the increase of crosslinking in the system.


Asunto(s)
Benzoxazinas/química , Fenómenos Mecánicos , Modelos Moleculares , Fenómenos Físicos , Polímeros/química , Conformación Molecular , Transición de Fase , Temperatura
20.
PLoS One ; 8(2): e50364, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23418413

RESUMEN

A number of historical texts are investigated to ascertain the optimum conditions for the preparation of synthetic ultramarine, using preparative methods that would have been available to alchemists and colour chemists of the nineteenth century. The effect of varying the proportion of sulphur in the starting material on the colour of the final product is investigated. The optimum preparation involves heating a homogenised, pelletised mixture of kaolin (100 parts), sodium carbonate (100 parts), bitumen emulsion (or any 'sticky' carbon source) (12 parts) and sulphur (60 parts) at 750°C for ca. 4 hours. At this stage the ingress of air should be limited. The sample is allowed to cool in the furnace to 500°C, the ingress of air is permitted and additional sulphur (30 parts) is introduced before a second calcination step is undertaken at 500°C for two hours. The products obtained from the optimum synthesis have CIE ranges of x  = 0.2945-0.3125, y  = 0.2219-0.2617, Y  = 0.4257-0.4836, L* = 3.8455-4.3682, a*  = 4.2763-7.6943, b* = -7.6772-(-)3.3033, L  = 3.8455-4.3682, C = 5.3964-10.8693, h = 315.0636-322.2562. The values are calculated using UV/visible near infrared spectra using Lazurite [1], under D65 illumination, and the 1931 2° observer.


Asunto(s)
Silicatos de Aluminio/síntesis química , Silicatos de Aluminio/historia , Color , Historia del Siglo XIX
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA