Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sci Rep ; 13(1): 7825, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188727

RESUMEN

Since the first identification of circular RNA (circRNA) in viral-like systems, reports of circRNAs and their functions in various organisms, cell types, and organelles have greatly expanded. Here, we report the first evidence, to our knowledge, of circular mRNA in the mitochondrion of the eukaryotic parasite, Trypanosoma brucei. While using a circular RT-PCR technique developed to sequence mRNA tails of mitochondrial transcripts, we found that some mRNAs are circularized without an in vitro circularization step normally required to produce PCR products. Starting from total in vitro circularized RNA and in vivo circRNA, we high-throughput sequenced three transcripts from the 3' end of the coding region, through the 3' tail, to the 5' start of the coding region. We found that fewer reads in the circRNA libraries contained tails than in the total RNA libraries. When tails were present on circRNAs, they were shorter and less adenine-rich than the total population of RNA tails of the same transcript. Additionally, using hidden Markov modelling we determined that enzymatic activity during tail addition is different for circRNAs than for total RNA. Lastly, circRNA UTRs tended to be shorter and more variable than those of the same transcript sequenced from total RNA. We propose a revised model of Trypanosome mitochondrial tail addition, in which a fraction of mRNAs is circularized prior to the addition of adenine-rich tails and may act as a new regulatory molecule or in a degradation pathway.


Asunto(s)
MicroARNs , Trypanosoma brucei brucei , ARN Circular/genética , ARN Circular/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN/metabolismo , MicroARNs/metabolismo
2.
New Phytol ; 239(5): 2026-2040, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36880409

RESUMEN

The black nectar produced by Melianthus flowers is thought to serve as a visual attractant to bird pollinators, but the chemical identity and synthesis of the black pigment are unknown. A combination of analytical biochemistry, transcriptomics, proteomics, and enzyme assays was used to identify the pigment that gives Melianthus nectar its black color and how it is synthesized. Visual modeling of pollinators was also used to infer a potential function of the black coloration. High concentrations of ellagic acid and iron give the nectar its dark black color, which can be recapitulated through synthetic solutions containing only ellagic acid and iron(iii). The nectar also contains a peroxidase that oxidizes gallic acid to form ellagic acid. In vitro reactions containing the nectar peroxidase, gallic acid, hydrogen peroxide, and iron(iii) fully recreate the black color of the nectar. Visual modeling indicates that the black color is highly conspicuous to avian pollinators within the context of the flower. Melianthus nectar contains a natural analog of iron-gall ink, which humans have used since at least medieval times. This pigment is derived from an ellagic acid-Fe complex synthesized in the nectar and is likely involved in the attraction of passerine pollinators endemic to southern Africa.


Asunto(s)
Magnoliopsida , Néctar de las Plantas , Humanos , Ácido Elágico , Compuestos Férricos , Tinta , Flores , Peroxidasas , Polinización
3.
bioRxiv ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36798374

RESUMEN

Since the first identification of circular RNA (circRNA) in viral-like systems, reports of circRNAs and their functions in various organisms, cell types, and organelles have greatly expanded. Here, we report the first evidence of circular mRNA in the mitochondrion of the eukaryotic parasite, Trypanosoma brucei . While using a circular RT-PCR technique developed to sequence mRNA tails of mitochondrial transcripts, we found that some mRNAs are circularized without an in vitro circularization step normally required to produce PCR products. Starting from total in vitro circularized RNA and in vivo circRNA, we high-throughput sequenced three transcripts from the 3' end of the coding region, through the 3' tail, to the 5' start of the coding region. We found that fewer reads in the circRNA libraries contained tails than in the total RNA libraries. When tails were present on circRNAs, they were shorter and less adenine-rich than the total population of RNA tails of the same transcript. Additionally, using hidden Markov modelling we determined that enzymatic activity during tail addition is different for circRNAs than for total RNA. Lastly, circRNA UTRs tended to be shorter and more variable than those of the same transcript sequenced from total RNA. We propose a revised model of Trypanosome mitochondrial tail addition, in which a fraction of mRNAs is circularized prior to the addition of adenine-rich tails and may act as a new regulatory molecule or in a degradation pathway.

4.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074876

RESUMEN

Nearly 90% of flowering plants depend on animals for reproduction. One of the main rewards plants offer to pollinators for visitation is nectar. Nesocodon mauritianus (Campanulaceae) produces a blood-red nectar that has been proposed to serve as a visual attractant for pollinator visitation. Here, we show that the nectar's red color is derived from a previously undescribed alkaloid termed nesocodin. The first nectar produced is acidic and pale yellow in color, but slowly becomes alkaline before taking on its characteristic red color. Three enzymes secreted into the nectar are either necessary or sufficient for pigment production, including a carbonic anhydrase that increases nectar pH, an aryl-alcohol oxidase that produces a pigment precursor, and a ferritin-like catalase that protects the pigment from degradation by hydrogen peroxide. Our findings demonstrate how these three enzymatic activities allow for the condensation of sinapaldehyde and proline to form a pigment with a stable imine bond. We subsequently verified that synthetic nesocodin is indeed attractive to Phelsuma geckos, the most likely pollinators of Nesocodon We also identify nesocodin in the red nectar of the distantly related and hummingbird-visited Jaltomata herrerae and provide molecular evidence for convergent evolution of this trait. This work cumulatively identifies a convergently evolved trait in two vertebrate-pollinated species, suggesting that the red pigment is selectively favored and that only a limited number of compounds are likely to underlie this type of adaptation.


Asunto(s)
Flores/metabolismo , Magnoliopsida/metabolismo , Pigmentación/fisiología , Néctar de las Plantas/metabolismo , Polen/metabolismo , Adaptación Fisiológica/fisiología , Animales , Aves/fisiología , Lagartos/fisiología , Polinización/fisiología , Reproducción/fisiología
5.
Plant Physiol ; 185(4): 1595-1616, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33585860

RESUMEN

Nectar is a primary reward mediating plant-animal mutualisms to improve plant fitness and reproductive success. Four distinct trichomatic nectaries develop in cotton (Gossypium hirsutum), one floral and three extrafloral, and the nectars they secrete serve different purposes. Floral nectar attracts bees for promoting pollination, while extrafloral nectar attracts predatory insects as a means of indirect protection from herbivores. Cotton therefore provides an ideal system for contrasting mechanisms of nectar production and nectar composition between different nectary types. Here, we report the transcriptome and ultrastructure of the four cotton nectary types throughout development and compare these with the metabolomes of secreted nectars. Integration of these datasets supports specialization among nectary types to fulfill their ecological niche, while conserving parallel coordination of the merocrine-based and eccrine-based models of nectar biosynthesis. Nectary ultrastructures indicate an abundance of rough endoplasmic reticulum positioned parallel to the cell walls and a profusion of vesicles fusing to the plasma membranes, supporting the merocrine model of nectar biosynthesis. The eccrine-based model of nectar biosynthesis is supported by global transcriptomics data, which indicate a progression from starch biosynthesis to starch degradation and sucrose biosynthesis and secretion. Moreover, our nectary global transcriptomics data provide evidence for novel metabolic processes supporting de novo biosynthesis of amino acids secreted in trace quantities in nectars. Collectively, these data demonstrate the conservation of nectar-producing models among trichomatic and extrafloral nectaries.


Asunto(s)
Productos Agrícolas/metabolismo , Flores/metabolismo , Gossypium/metabolismo , Néctar de las Plantas/biosíntesis , Tricomas/metabolismo , Vías Biosintéticas
6.
PLoS One ; 16(1): e0244858, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33406128

RESUMEN

In this study, hierarchies of probabilistic models are evaluated for their ability to characterize the untemplated addition of adenine and uracil to the 3' ends of mitochondrial mRNAs of the human pathogen Trypanosoma brucei, and for their generative abilities to reproduce populations of these untemplated adenine/uridine "tails". We determined the most ideal Hidden Markov Models (HMMs) for this biological system. While our HMMs were not able to generatively reproduce the length distribution of the tails, they fared better in reproducing nucleotide composition aspects of the tail populations. The HMMs robustly identified distinct states of nucleotide addition that correlate to experimentally verified tail nucleotide composition differences. However they also identified a surprising subclass of tails among the ND1 gene transcript populations that is unexpected given the current idea of sequential enzymatic action of untemplated tail addition in this system. Therefore, these models can not only be utilized to reflect biological states that we already know about, they can also identify hypotheses to be experimentally tested. Finally, our HMMs supplied a way to correct a portion of the sequencing errors present in our data. Importantly, these models constitute rare simple pedagogical examples of applied bioinformatic HMMs, due to their binary emissions.


Asunto(s)
Enzimas/metabolismo , Modelos Estadísticos , Polimerizacion , Cadenas de Markov , ARN Mensajero/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
7.
Pathogens ; 9(4)2020 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-32290588

RESUMEN

In kinetoplastids, the first seven steps of glycolysis are compartmentalized into a glycosome along with parts of other metabolic pathways. This organelle shares a common ancestor with the better-understood eukaryotic peroxisome. Much of our understanding of the emergence, evolution, and maintenance of glycosomes is limited to explorations of the dixenous parasites, including the enzymatic contents of the organelle. Our objective was to determine the extent that we could leverage existing studies in model kinetoplastids to determine the composition of glycosomes in species lacking evidence of experimental localization. These include diverse monoxenous species and dixenous species with very different hosts. For many of these, genome or transcriptome sequences are available. Our approach initiated with a meta-analysis of existing studies to generate a subset of enzymes with highest evidence of glycosome localization. From this dataset we extracted the best possible glycosome signal peptide identification scheme for in silico identification of glycosomal proteins from any kinetoplastid species. Validation suggested that a high glycosome localization score from our algorithm would be indicative of a glycosomal protein. We found that while metabolic pathways were consistently represented across kinetoplastids, individual proteins within those pathways may not universally exhibit evidence of glycosome localization.

9.
Plant Direct ; 3(2): e00120, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31245763

RESUMEN

Nectar is the main reward that flowers offer to pollinators to entice repeated visitation. Cucurbita pepo (squash) is an excellent model for studying nectar biology, as it has large nectaries that produce large volumes of nectar relative to most other species. Squash is also monoecious, having both female and male flowers on the same plant, which allows comparative analyses of nectary function in one individual. Here, we report the nectary transcriptomes from both female and male nectaries at four stages of floral maturation. Analysis of these transcriptomes and subsequent confirmatory experiments revealed a metabolic progression in nectaries leading from starch synthesis to starch degradation and to sucrose biosynthesis. These results are consistent with previously published models of nectar secretion and also suggest how a sucrose-rich nectar can be synthesized and secreted in the absence of active transport across the plasma membrane. Nontargeted metabolomic analyses of nectars also confidently identified 40 metabolites in both female and male nectars, with some displaying preferential accumulation in nectar of either male or female flowers. Cumulatively, this study identified gene targets for reverse genetics approaches to study nectary function, as well as previously unreported nectar metabolites that may function in plant-biotic interactions.

10.
Front Plant Sci ; 9: 812, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967631

RESUMEN

Floral nectar and other reward facilitate crop pollination, and in so doing, increase the amount and breadth of food available for humans. Though abundance and diversity of pollinators (particularly bees) have declined over the past several decades, a concomitant increase in reliance on pollinators presents a challenge to food production. Development of crop varieties with specific nectar or nectar-related traits to attract and retain pollinating insects is an appealing strategy to help address needs of agriculture and pollinators for several reasons. First, many crops have specific traits which have been identified to enhance crop-pollinator interactions. Also, an improved understanding of mechanisms that govern nectar-related traits suggest simplified phenotyping and breeding are possible. Finally, the use of nectar-related traits to enhance crop pollination should complement other measures promoting pollinators and will not limit options for crop production or require any changes by growers (other than planting varieties that are more attractive or rewarding to pollinators). In this article, we review the rationale for improving crop-pollinator interactions, the effects of specific plant traits on pollinator species, and use cultivated sunflowers as a case study. Recent research in sunflower has (i) associated variation in bee visitation with specific floral traits, (ii) quantified benefits of pollinators to hybrid yields, and (iii) used genetic resources in sunflower and other plants to find markers associated with key floral traits. Forthcoming work to increase pollinator rewards should enable sunflower to act as a model for using nectar-related traits to enhance crop-pollinator interactions.

11.
Genesis ; 56(3): e23096, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29488319

RESUMEN

Anencephaly is a fatal human neural tube defect (NTD) in which the anterior neural tube remains open. Zebrafish embryos with reduced Nodal signaling display an open anterior neural tube phenotype that is analogous to anencephaly. Previous work from our laboratory suggests that Nodal signaling acts through induction of the head mesendoderm and mesoderm. Head mesendoderm/mesoderm then, through an unknown mechanism, promotes formation of the polarized neuroepithelium that is capable of undergoing the movements required for closure. We compared the transcriptome of embryos treated with a Nodal signaling inhibitor at sphere stage, which causes NTDs, to embryos treated at 30% epiboly, which does not cause NTDs. This screen identified over 3,000 transcripts with potential roles in anterior neurulation. Expression of several genes encoding components of tight and adherens junctions was significantly reduced, supporting the model that Nodal signaling regulates formation of the neuroepithelium. mRNAs involved in Wnt, FGF, and BMP signaling were also differentially expressed, suggesting these pathways might regulate anterior neurulation. In support of this, we found that pharmacological inhibition of FGF-receptor function causes an open anterior NTD as well as loss of mesodermal derivatives. This suggests that Nodal and FGF signaling both promote anterior neurulation through induction of head mesoderm.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Defectos del Tubo Neural/genética , Tubo Neural/embriología , Tubo Neural/metabolismo , Transcripción Genética , Transcriptoma , Animales , Biomarcadores , Tipificación del Cuerpo/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Biológicos , Defectos del Tubo Neural/metabolismo , Fenotipo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Pez Cebra/genética
12.
Int J Parasitol ; 48(2): 179-189, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100810

RESUMEN

The intricate life cycle of Trypanosoma brucei requires extensive regulation of gene expression levels of the mtRNAs for adaptation. Post-transcriptional gene regulatory programs, including unencoded mtRNA 3' tail additions, potentially play major roles in this adaptation process. Intriguingly, T. brucei mitochondrial transcripts possess two distinct unencoded 3' tails, each with a differing functional role; i.e., while one type is implicated in RNA stability (in-tails), the other type appears associated with translation (ex-tails). We examined the degree to which tail characteristics differ among cytochrome c oxidase subunits I and III (CO1 and CO3), and NADH dehydrogenase subunit 1 (ND1) transcripts, and to what extent these characteristics differ developmentally. We found that CO1, CO3 and ND1 transcripts possess longer in-tails in the mammalian life stage. By mathematically modelling states of in-tail and ex-tail addition, we determined that the typical length at which an in-tail is extended to become an ex-tail differs by transcript and, in the case of ND1, by life stage. To the best of our knowledge, we provide the first evidence that developmental differences exist in tail length distributions of mtRNAs, underscoring the potential involvement of in-tail and ex-tail populations in mitochondrial post-transcriptional regulation mechanisms.


Asunto(s)
Mitocondrias/genética , Procesamiento Postranscripcional del ARN , ARN Mitocondrial/metabolismo , Trypanosoma brucei brucei/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/ultraestructura , ADN Polimerasa Dirigida por ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Trypanosoma brucei brucei/genética
13.
BMC Plant Biol ; 17(1): 201, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29137608

RESUMEN

BACKGROUND: Pennycress [Thlaspi arvense L (Brassicaceae)] is being domesticated as a renewable biodiesel feedstock that also provides crucial ecosystems services, including as a nutritional resource for pollinators. However, its flowers produce significantly less nectar than other crop relatives in the Brassicaceae. This study was undertaken to understand the basic biology of the pennycress nectary as an initial step toward the possibility of enhancing nectar output from its flowers. RESULTS: Pennycress flowers contain four equivalent nectaries located extrastaminally at the base of the insertion sites of short and long stamens. Like other Brassicaceae, the nectaries have open stomates on their surface, which likely serve as the sites of nectar secretion. The nectaries produce four distinct nectar droplets that accumulate in concave structures at the base of each of the four petals. To understand the molecular biology of the pennycress nectary, RNA was isolated from 'immature' (pre-secretory) and 'mature' (secretory) nectaries and subjected to RNA-seq. Approximately 184 M paired-end reads (368 M total reads) were de novo assembled into a total of 16,074 independent contigs, which mapped to 12,335 unique genes in the pennycress genome. Nearly 3700 genes were found to be differentially expressed between immature and mature nectaries and subjected to gene ontology and metabolic pathway analyses. Lastly, in silico analyses identified 158 pennycress orthologs to Arabidopsis genes with known enriched expression in nectaries. These nectary-enriched expression patterns were verified for select pennycress loci by semi-quantitative RT-PCR. CONCLUSIONS: Pennycress nectaries are unique relative to those of other agriculturally important Brassicaceae, as they contain four equivalent nectaries that present their nectar in specialized cup-shaped structures at the base of the petals. In spite of these morphological differences, the genes underlying the regulation and production of nectar appear to be largely conserved between pennycress and Arabidopsis thaliana. These results provide a starting point for using forward and reverse genetics approaches to enhance nectar synthesis and secretion in pennycress.


Asunto(s)
Néctar de las Plantas/genética , Thlaspi/genética , Flores/anatomía & histología , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Filogenia , Néctar de las Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Thlaspi/metabolismo
14.
Toxicol Sci ; 159(2): 470-479, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28962528

RESUMEN

Doxorubicin (DOX) is a widely used treatment for human cancers, but increases the risk of life-threatening congestive heart failure (CHF). DOX-induced mitochondrial damage is cumulative and persistent, similar to that observed clinically for risk of CHF. Recent evidence suggests the persistent nature of this injury is caused by altered regulation of genes important to normal cardiac functioning. We hypothesize that chronic DOX therapy is associated with epigenetic modifications of DNA methylation status, particularly in critical regulators of mitochondrial function and capacity. Cardiac tissue from Sprague Dawley rats receiving injections of DOX (2 mg/kg, s.c.) or saline once a week for 6 weeks, followed by 5 weeks of drug-free holiday was used for Reduced Representation Bisulfite Sequencing to map specific sites of DNA methylation. Comparison of these methylomes indicated DOX exposure alters DNA methylation landscapes, and identified 14 genes with highly altered methylation status. Preliminary functional effects of DNA methylation changes were characterized by quantifying mRNA expression of selected targets (Rbm20, Nmnat2, Klhl29, Cacna1c, Scn5a.) Gene expression of Rbm20, Klhl29, and Nmnat2 were significantly altered in DOX treated animals; Klhl29 and Nmnat2 demonstrated significant decreases in protein expression corresponding to gene expression. Through an epigenotype-to-phenotype approach, this study identifies potential markers and molecular regulators of irreversible DOX-induced cardiovascular toxicity associated with clinically limiting CHF. However, none of the most prevalent genes identified directly relate to mitochondrial structure or function. Thus, the investigation fails to demonstrate a direct association between this altered methylome and persistent mitochondrionopathy associated with chronic doxorubicin cardiac toxicity.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Metilación de ADN , Doxorrubicina/toxicidad , Animales , Crecimiento/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Pruebas de Toxicidad Crónica , Transcripción Genética/efectos de los fármacos
15.
Physiol Genomics ; 48(7): 513-25, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27207617

RESUMEN

Mammalian hibernators adapt to prolonged periods of immobility, hypometabolism, hypothermia, and oxidative stress, each capable of reducing bone marrow activity. In this study bone marrow transcriptomes were compared among thirteen-lined ground squirrels collected in July, winter torpor, and winter interbout arousal (IBA). The results were consistent with a suppression of acquired immune responses, and a shift to innate immune responses during hibernation through higher complement expression. Consistent with the increase in adipocytes found in bone marrow of hibernators, expression of genes associated with white adipose tissue are higher during hibernation. Genes that should strengthen the bone by increasing extracellular matrix were higher during hibernation, especially the collagen genes. Finally, expression of heat shock proteins were lower, and cold-response genes were higher, during hibernation. No differential expression of hematopoietic genes involved in erythrocyte or megakaryocyte production was observed. This global view of the changes in the bone marrow transcriptome over both short term (torpor vs. IBA) and long term (torpor vs. July) hypothermia can explain several observations made about circulating blood cells and the structure and strength of the bone during hibernation.


Asunto(s)
Hibernación/genética , Sciuridae/fisiología , Transcriptoma/genética , Inmunidad Adaptativa/genética , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Nivel de Alerta/genética , Médula Ósea/metabolismo , Eritrocitos/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Choque Térmico , Inmunidad Innata/genética , Mamíferos/genética , Mamíferos/metabolismo , Megacariocitos/metabolismo , Sciuridae/metabolismo , Estaciones del Año , Letargo/genética
16.
RNA ; 22(3): 477-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26759453

RESUMEN

Post-transcriptionally added RNA 3' nucleotide extensions, or tails, impose numerous regulatory effects on RNAs, including effects on RNA turnover and translation. However, efficient methods for in-depth tail profiling of a transcript of interest are still lacking, hindering available knowledge particularly of tail populations that are highly heterogeneous. Here, we developed a targeted approach, termed circTAIL-seq, to quantify both major and subtle differences of heterogeneous tail populations. As proof-of-principle, we show that circTAIL-seq quantifies the differences in tail qualities between two selected Trypanosoma brucei mitochondrial transcripts. The results demonstrate the power of the developed method in identification, discrimination, and quantification of different tail states that the population of one transcript can possess. We further show that circTAIL-seq can detect the tail characteristics for variants of transcripts that are not easily detectable by conventional approaches, such as degradation intermediates. Our findings are not only well supported by previous knowledge, but they also expand this knowledge and provide experimental evidence for previous hypotheses. In the future, this approach can be used to determine changes in tail qualities in response to environmental or internal stimuli, or upon silencing of genes of interest in mRNA-processing pathways. In summary, circTAIL-seq is an effective tool for comparing nonencoded RNA tails, especially when the tails are extremely variable or transcript of interest is low abundance.


Asunto(s)
ARN Mensajero/genética , ARN Protozoario/genética , Análisis de Secuencia de ARN/métodos , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Trypanosoma brucei brucei/genética
17.
Physiol Genomics ; 47(3): 58-74, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25572546

RESUMEN

Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation.


Asunto(s)
Adaptación Fisiológica/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Corazón/fisiología , Hibernación/genética , Músculo Esquelético/metabolismo , Sciuridae/genética , Animales , Análisis por Conglomerados , Ácidos Grasos/metabolismo , Feto/metabolismo , Glucólisis/genética , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos/genética , Oxidación-Reducción , Peroxisomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sciuridae/fisiología , Programas Informáticos , Regulación hacia Arriba/genética
18.
Plant J ; 74(6): 893-904, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23551385

RESUMEN

The PIN family of proteins is best known for its involvement in polar auxin transport and tropic responses. PIN6 (At1g77110) is one of the remaining PIN family members in Arabidopsis thaliana to which a biological function has not yet been ascribed. Here we report that PIN6 is a nectary-enriched gene whose expression level is positively correlated with total nectar production in Arabidopsis, and whose function is required for the proper development of short stamens. PIN6 accumulates in internal membranes consistent with the ER, and multiple lines of evidence demonstrate that PIN6 is required for auxin-dependent responses in nectaries. Wild-type plants expressing auxin-responsive DR5:GFP or DR5:GUS reporters displayed intense signal in lateral nectaries, but pin6 lateral nectaries showed little or no signal for these reporters. Further, exogenous auxin treatment increased nectar production more than tenfold in wild-type plants, but nectar production was not increased in pin6 mutants when treated with auxin. Conversely, the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) reduced nectar production in wild-type plants by more than twofold, but had no significant effect on pin6 lines. Interestingly, a MYB57 transcription factor mutant, myb57-2, closely phenocopied the loss-of-function mutant pin6-2. However, PIN6 expression was not dependent on MYB57, and RNA-seq analyses of pin6-2 and myb57-2 mutant nectaries showed little overlap in terms of differentially expressed genes. Cumulatively, these results demonstrate that PIN6 is required for proper auxin response and nectary function in Arabidopsis. These results also identify auxin as an important factor in the regulation of nectar production, and implicate short stamens in the maturation of lateral nectaries.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Flores/efectos de los fármacos , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Genes Reporteros , Homeostasis , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/genética , Mutagénesis Insercional , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Néctar de las Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética
19.
PLoS One ; 8(3): e58427, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23526982

RESUMEN

Mammalian hibernation presents a unique opportunity to study naturally occurring neuroprotection. Hibernating ground squirrels undergo rapid and extreme physiological changes in body temperature, oxygen consumption, and heart rate without suffering neurological damage from ischemia and reperfusion injury. Different brain regions show markedly different activity during the torpor/arousal cycle: the cerebral cortex shows activity only during the periodic returns to normothermia, while the hypothalamus is active over the entire temperature range. Therefore, region-specific neuroprotective strategies must exist to permit this compartmentalized spectrum of activity. In this study, we use the Illumina HiSeq platform to compare the transcriptomes of these two brain regions at four collection points across the hibernation season: April Active, October Active, Torpor, and IBA. In the cerebral cortex, 1,085 genes were found to be differentially expressed across collection points, while 1,063 genes were differentially expressed in the hypothalamus. Comparison of these transcripts indicates that the cerebral cortex and hypothalamus implement very different strategies during hibernation, showing less than 20% of these differentially expressed genes in common. The cerebral cortex transcriptome shows evidence of remodeling and plasticity during hibernation, including transcripts for the presynaptic cytomatrix proteins bassoon and piccolo, and extracellular matrix components, including laminins and collagens. Conversely, the hypothalamic transcriptome displays upregulation of transcripts involved in damage response signaling and protein turnover during hibernation, including the DNA damage repair gene RAD50 and ubiquitin E3 ligases UBR1 and UBR5. Additionally, the hypothalamus transcriptome also provides evidence of potential mechanisms underlying the hibernation phenotype, including feeding and satiety signaling, seasonal timing mechanisms, and fuel utilization. This study provides insight into potential neuroprotective strategies and hibernation control mechanisms, and also specifically shows that the hibernator brain exhibits both seasonal and regional differences in mRNA expression.


Asunto(s)
Encéfalo/fisiología , Hibernación/genética , Hibernación/fisiología , Sciuridae/genética , Sciuridae/fisiología , Animales , Corteza Cerebral/fisiología , Reparación del ADN , Metabolismo Energético/genética , Conducta Alimentaria/fisiología , Femenino , Hipotálamo/fisiología , Masculino , Plasticidad Neuronal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estaciones del Año , Transcriptoma
20.
PLoS One ; 8(12): e85157, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386461

RESUMEN

We used RNAseq to generate a comprehensive transcriptome of Brown Adipose Tissue (BAT) over the course of a year in the naturally hibernating thirteen-lined ground squirrel, Ictidomys tridecemlineatus. During hibernation ground squirrels do not feed and use fat stored in White Adipose Tissue (WAT) as their primary source of fuel. Stored lipid is consumed at high rates by BAT to generate heat at specific points during the hibernation season. The highest rate of BAT activity occurs during periodic arousals from hypothermic torpor bouts, referred to as Interbout Arousals (IBAs). IBAs are characterized by whole body re-warming (from 5 to 37 °C) in 2-3 hours, and provide a unique opportunity to determine the genes responsible for the highly efficient lipid oxidation and heat generation that drives the arousal process. Illumina HighSeq sequencing identified 14,573 distinct BAT mRNAs and quantified their levels at four points: active ground squirrels in April and October, and hibernating animals during both torpor and IBA. Based on significant changes in mRNA levels across the four collection points, 2,083 genes were shown to be differentially expressed. In addition to providing detail on the expression of nuclear genes encoding mitochondrial proteins, and genes involved in beta-adrenergic and lipolytic pathways, we identified differentially expressed genes encoding various transcription factors and other regulatory proteins which may play critical roles in high efficiency fat catabolism, non-shivering thermogenesis, and transitions into and out of the torpid state.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Regulación de la Expresión Génica/fisiología , Hibernación/fisiología , Metabolismo de los Lípidos/fisiología , Marmota/fisiología , Transcriptoma/fisiología , Tejido Adiposo Blanco/fisiología , Animales , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA