RESUMEN
Exciton binding energy (Eb) is a key parameter to determine the mechanism and performance of organic optoelectronic devices. Small Eb benefits to reduce the interfacial energy offset and the energy loss of organic solar cells. However, quantum-chemical calculations of the Eb in solid state with considering electronic polarization effects are extremely time-consuming. Furthermore, current studies lack critical descriptors. Here, we use data-driven machine learning (ML) to accelerate the computation and identify the key descriptors most relevant to the solid-state Eb. The results verify two key descriptors associated with molecular and aggregation-state properties for efficient prediction of the solid-state Eb. Moreover, a very high accuracy is achieved by using the extreme gradient boosting algorithm, with the Pearson's correlation coefficient of 0.92. Finally, we use this ML model to predict the Eb of thin films, which is difficult to achieve using the current quantum-chemical calculations due to the large structural disorder. Remarkably, the predicted thin-film Eb values are fully consistent with the results of temperature-dependent photoluminescence spectra. Therefore, our work provides an accurate and efficient approach to predict the solid-state Eb and would be helpful to accelerate the exploitation of novel promising organic photovoltaic materials.
RESUMEN
Electronic polarization plays a pivotal role in determining the molecular energy levels of organic semiconductors (OSCs) in the condensed phase. However, accurate estimation of the electronic polarization energy is a challenging task due to the intricate imbalance between the precision and efficiency. In this work, we have developed an embedding charge quantum mechanics/continuum dielectric (EC-QM/CD) model, which enables quantitative evaluation of the ionization potential (IP), electron affinity (EA), and polarization energy in both crystalline and amorphous solids for OSCs. The benchmark calculations on both p-type OSCs of oligoacenes and n-type OSCs of A-D-A small-molecule acceptors show that the values of IP, EA, and polarization energy obtained by EC-QM/CD are in good accordance with the experimental measurements or the results by high-precision methods, while the computational costs are substantially reduced. Given its balance between the accuracy and efficiency, the EC-QM/CD model exhibits considerable potential to broaden the applications in the field of OSCs, for instance, high-throughput screening by using solid-state energy levels or polarization energies as critical descriptors.
RESUMEN
A challenge remains in achieving adequate surface roughness of SLM fabricated interior channels, which is crucial for fuel delivery in the space industry. This study investigated the surface roughness of interior fine flow channels (1 mm diameter) embedded in SLM fabricated TC4 alloy space components. A machine learning approach identified layer thickness as a significant factor affecting interior channel surface roughness, with an importance score of 1.184, followed by scan speed and laser power with scores of 0.758 and 0.512, respectively. The roughness resulted from thin layer thickness of 20 µm, predominantly formed through powder adherence, while from thicker layer of 50 µm, the roughness was mainly due to the stair step effect. Slow scan speeds increased melt pools solidification time at roof overhangs, causing molten metal to sag under gravity. Higher laser power increased melt pools temperature and led to dross formation at roof overhangs. Smaller hatch spaces increased roughness due to overlapping of melt tracks, while larger hatch spaces reduced surface roughness but led to decreased part density. The surface roughness was recorded at 34 µm for roof areas and 26.15 µm for floor areas. These findings contribute to potential adoption of TC4 alloy components in the space industry.
RESUMEN
The energetic landscape of charge carriers, namely the ionization potential (IP) and electron affinity (EA), can play a crucial role in the charge separation and migration processes for organic solar cells (OSCs). However, the impact of molecular orientations on the energy levels remains elusive, especially in acceptor-donor-acceptor (A-D-A) type nonfullerene acceptors (NFAs) with intrinsic anisotropy. Using the self-consistent quantum mechanics/embedded charge (sc-QM/EC) approach, we have investigated the energy level shifts from the edge-on or face-on surfaces to the bulk phase for three typical NFA crystals, IDIC-4F, INIC-4F, and Y6. The results point out that the surface-to-bulk changes in IP are limited within 0.2 eV for both the orientations due to the mutual counteraction between the electrostatic and induction effects. In sharp contrast, the EA values are substantially decreased from the bulk to the surfaces; especially, for the face-on orientation, the reduction reaches 0.5-0.8 eV. This indicates that the face-on orientation can provide a significant driving force for electrons moving from the surface or the interface to the bulk phase and thus improve the charge separation efficiency. Our work indicates that enhancing the face-on orientation is an effective method to increase the charge separation driving force for the OSCs based on A-D-A NFAs.
RESUMEN
Polymerization of Y6-type acceptor molecules leads to bulk-heterojunction organic solar cells with both high power-conversion efficiency and device stability, but the underlying mechanism remains unclear. Here we show that the exciton recombination dynamics of polymerized Y6-type acceptors (Y6-PAs) strongly depends on the degree of aggregation. While the fast exciton recombination rate in aggregated Y6-PA competes with electron-hole separation at the donor-acceptor (D-A) interface, the much-suppressed exciton recombination rate in dispersed Y6-PA is sufficient to allow efficient free charge generation. Indeed, our experimental results and theoretical simulations reveal that Y6-PAs have larger miscibility with the donor polymer than Y6-type small molecular acceptors, leading to D-A percolation that effectively prevents the formation of Y6-PA aggregates at the interface. Besides enabling high charge generation efficiency, the interfacial D-A percolation also improves the thermodynamic stability of the blend morphology, as evident by the reduced device "burn-in" loss upon solar illumination.
RESUMEN
Silicon carbide (SiC) ceramic material has become the most promising third-generation semiconductor material for its excellent mechanical properties at room temperature and high temperature. However, SiC ceramic machining has serious tool wear, low machining efficiency, poor machining quality and other disadvantages due to its high hardness and high wear resistance, which limits the promotion and application of such materials. In this paper, comparison experiments of longitudinal torsional ultrasonic vibration grinding (LTUVG) and common grinding (CG) of SiC ceramics were conducted, and the longitudinal torsional ultrasonic vibration grinding SiC ceramics cutting force model was developed. In addition, the effects of ultrasonic machining parameters on cutting forces, machining quality and subsurface cracking were investigated, and the main factors and optimal parameters affecting the cutting force improvement rate were obtained by orthogonal tests. The results showed that the maximum improvement of cutting force, surface roughness and subsurface crack fracture depth by longitudinal torsional ultrasonic vibrations were 82.59%, 22.78% and 30.75%, respectively. A longitudinal torsional ultrasonic vibrations cutting force prediction model containing the parameters of tool, material properties and ultrasound was established by the removal characteristics of SiC ceramic material, ultrasonic grinding principle and brittle fracture theory. And the predicted results were in good agreement with the experimental results, and the maximum error was less than 15%. The optimum process parameters for cutting force reduction were a spindle speed of 22,000 rpm, a feed rate of 600 mm/min and a depth of cut of 0.011 mm.
RESUMEN
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received a lot of attention because of their unique optical, electronic, and magnetic properties, but their synthesis remains challenging. Herein, we report a non-benzenoid isomer of peri-tetracene, diazulenorubicene (DAR), with two sets of 5/7/5 membered rings synthesized by a (3+2) annulation reaction. Compared with the precursor containing only 5/7 membered rings, the newly formed five membered rings switch the aromaticity of the original heptagon/pentagon from antiaromatic/aromatic to non-aromatic/antiaromatic respectively, modify the intermolecular packing modes, and lower the LUMO levels. Notably, compound 2 b (DAR-TMS) shows p-type semiconducting properties with a hole mobility up to 1.27â cm2 â V-1 s-1 . Moreover, further extension to larger non-benzenoid PAHs with 19â rings was achieved through on-surface chemistry from the DAR derivative with one alkynyl group.
RESUMEN
High carrier mobility is beneficial to increase the active-layer thickness while maintaining a high fill factor, which is crucial to further improve the light harvesting and organic photovoltaic efficiency. The aim of this Perspective is to elucidate the electron transport mechanisms in prototypical non-fullerene (NF) acceptors through our recent theoretical studies. The electron transport in A-D-A small-molecule acceptors (SMAs), e.g., ITIC and Y6, is mainly determined by end-group π-π stacking. Relative to ITIC, the angular backbone along with more flexible side chains leads to Y6 having a closer stacking and enhanced intermolecular electronic connectivity. For polymerized rylene diimide acceptors, to achieve high electron mobilities, they need to simultaneously increase intramolecular and intermolecular connectivity. Finally, finely tuning the π-bridge modes to enhance intramolecular superexchange coupling is essential to develop novel polymerized A-D-A SMAs.
RESUMEN
Low energy loss is a prerequisite for organic solar cells to achieve high photovoltaic efficiency. Electron-vibration coupling (i. e., intramolecular reorganization energy) plays a crucial role in the photoelectrical conversion and energy loss processes. In this Concept article, we summarize our recent theoretical advances on revealing the energy loss mechanisms at the molecular level of A-D-A electron acceptors. We underline the importance of electron-vibration couplings on reducing the energy loss and describe the effective molecular design strategies towards low energy loss through decreasing the electron-vibration couplings.
RESUMEN
Reducing the exciton binding energy Eb of organic photoactive materials is critical to minimize the energy loss and improve the photovoltaic efficiency of organic solar cells. However, the relation between the Eb and molecular packing is not well understood. Herein, the Eb in the crystals of a series of A-D-A type nonfullerene acceptors with different lengths of alkyl side chains has been examined by self-consistent quantum mechanics/embedded charge calculations. The variation of molecular packing induced by the different alkyl chains can have an important impact on the polarization effect of charge carriers and thereby the Eb. More interestingly, the Eb values are found to be linearly increased with the ratio of the void fraction vs the packing coefficient of molecular backbones in the solid crystals. Owing to the smallest ratio, a remarkable low Eb of several tens of meV is achieved for the acceptor with an optimal length of alkyl chains.
RESUMEN
In contrast to the inorganic and perovskite solar cells, organic photovoltaics (OPV) depend on a series of charge generation and recombination processes, which complicates molecular design to improve the power conversion efficiencies (PCEs). Herein, we first propose the singlet-triplet energy gap (ΔEST ) as a critical molecular descriptor for predicting the PCE considering that minimizing ΔEST is beneficial to simultaneously reduce voltage loss and triplet recombination. Remarkably, the results from data-driven machine learning verify that the prediction accuracy of the ΔEST (Pearson's correlation coefficient r=0.72) is apparently superior to that of two commonly used molecular descriptors in OPV, i.e., the optical gap (r=0.65) and the driving force (r=0.53). Moreover, an impressive prediction accuracy of r=0.81 is achieved just by combining the three descriptors. This work paves the way toward rapid and precise screening of efficient OPV materials.
RESUMEN
The A-DA'D-A fused-ring electron acceptors with an angular fusion mode and electron-deficient core has significantly boosted organic photovoltaic efficiency. Here, the intrinsic role of the peculiar structure is revealed by comparing representative A-DA'D-A acceptor Y6 with its A-D-A counterparts having different fusion modes. Owing to the more delocalized HOMO and deeper LUMO level, Y6 exhibits stronger and red-shifted absorption relative to the linear and angular fused A-D-A acceptors, respectively. Moreover, the change from linear to angular fusion substantially reduces the electron-vibration couplings, which is responsible for the faster exciton diffusion, exciton dissociation, and electron transport for Y6 than the linear fused A-D-A acceptor. Notably, the electron-vibration coupling for exciton dissociation is further decreased by introducing the electron-deficient core, thus contributing to the efficient charge generation under low driving forces in the Y6-based devices.
RESUMEN
ConspectusFor organic solar cells (OSCs), charge generation at the donor/acceptor interfaces is regarded as a two-step process: driven by the interfacial energy offsets, the excitons produced by light absorption are first dissociated into the charge-transfer (CT) states, and then the CT states are further separated into free charge carriers of holes and electrons by overcoming their Coulomb attraction. Meanwhile, the CT states can recombine through radiative and nonradiative decay. Owing to the emergence of narrow-band-gap A-D-A small-molecule acceptors, nonfullerene (NF) OSCs have developed rapidly in recent years and the power conversion efficiencies (PCEs) surpass 18% now. The great achievement can be attributed to the high-yield charge generation under low exciton dissociation (ED) driving forces, which ensures both high photocurrent and small voltage loss. However, it is traditionally believed that a considerable driving force (e.g., at least 0.3 eV in fullerene-based OSCs) is essential to provide excess energy for the CT states to achieve efficient charge separation (CS). Therefore, a fundamental question open to the community is how the excitons split into free charge carriers so efficiently under low driving forces in the state-of-the-art NF OSCs.In this Account, we summarize our recent theoretical advances on the charge generation mechanisms in the low-driving-force NF OSCs. First, the A-D-A acceptors are found to dock with the D-A copolymer or A-D-A small-molecule donors mainly via local π-π interaction between their electron-withdrawing units, and such interfacial geometries can provide sufficient electronic couplings, thus ensuring fast ED. Second, the polarization energies of holes and electrons are enhanced during CS, which is beneficial to reduce the CS energy barrier and even leads to barrierless CS in the OSCs based on fluorinated A-D-A acceptors. Moreover, the exciton binding energies (Eb) are substantially decreased by the strong polarization of charge carriers for the A-D-A acceptors; especially for the Y6 system with three-dimensional molecular packing structures, the remarkable small Eb can enable direct photogeneration of free charge carriers. Accordingly, the excess energy becomes unnecessary for CS in the state-of-the-art NF OSCs. Third, to simultaneously decrease the driving force and suppress charge recombination via the triplet channel, it is imperative to reduce the singlet-triplet energy difference (ΔEST) of the narrow-band-gap A-D-A acceptors. Importantly, the intermolecular end-group π-π stacking is demonstrated to effectively decrease the ΔEST while keeping strong light absorption. Finally, hybridization of the CT states with local excitation can be induced by small interfacial energy offset. Such hybridization will result in direct population of thermalized CT states upon light absorption and a significant increase of luminescence quantum efficiency, which is beneficial to concurrently promote CS and reduce nonradiative voltage loss. We hope this Account contributes to the molecular understanding of the mechanisms of efficient charge generation with low driving forces and would be helpful for further improving the performance of organic photovoltaics in the future.
RESUMEN
INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is a progressive condition related to abnormal inflammatory responses. As an inflammatory driver, nucleotide-binding oligomerizing domain-1 (NOD1) is highly expressed in pulmonary inflammatory cells; however, the roles of NOD1 in COPD are unknown. METHODS: A COPD mouse model was established by lipopolysaccharides tracheal instillation plus cigarette smoke (CS) exposure. NOD1 activation was induced by C12-iE-DAP (iE) treatment in both control and COPD mice. Inflammatory infiltration, pulmonary histological damage and gene expression were measured to evaluate the lung function of treated mice. RESULTS: The results showed that NOD1 was up-regulated in COPD mice, which significantly exaggerated CS-induced impairment of lung function, demonstrated by increased airway resistance, functional residual capacity and pulmonary damages. Mechanistically, NOD1 activation strongly activated the TLR4/NF-κB signaling pathway and then increased inflammatory responses and promoted the secretion of inflammatory cytokines. DISCUSSION: This study demonstrates that NOD1 is an important risk factor in the progression of COPD; therefore, targeting NOD1 in lung tissues is a potential strategy for COPD treatment.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Animales , Pulmón , Ratones , FN-kappa B , Nucleótidos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Humo/efectos adversos , Fumar/efectos adversosRESUMEN
The cornerstones of emerging high-performance organic photovoltaic devices are bulk heterojunctions, which usually contain both structure disorders and bicontinuous interpenetrating grain boundaries with interfacial defects. This feature complicates fundamental understanding of their working mechanism. Highly-ordered crystalline organic p-n heterojunctions with well-defined interface and tailored layer thickness, are highly desirable to understand the nature of organic heterojunctions. However, direct growth of such a crystalline organic p-n heterojunction remains a huge challenge. In this work, we report a design rationale to fabricate monolayer molecular crystals based p-n heterojunctions. In an organic field-effect transistor configuration, we achieved a well-balanced ambipolar charge transport, comparable to single component monolayer molecular crystals devices, demonstrating the high-quality interface in the heterojunctions. In an organic solar cell device based on the p-n junction, we show the device exhibits gate-tunable open-circuit voltage up to 1.04 V, a record-high value in organic single crystalline photovoltaics.
RESUMEN
Inorganic cesium lead halide perovskites offer a pathway towards thermally stable photovoltaics. However, moisture-induced phase degradation restricts the application of hole transport layers (HTLs) with hygroscopic dopants. Dopant-free HTLs fail to realize efficient photovoltaics due to severe electrical loss. Herein, we developed an electrical loss management strategy by manipulating poly(3-hexylthiophene) with a small molecule, i.e., SMe-TATPyr. The developed P3HT/SMe-TATPyr HTL shows a three-time increase of carrier mobility owing to breaking the long-range ordering of "edge-on" P3HT and inducing the formation of "face-on" clusters, over 50 % decrease of the perovskite surface defect density, and a reduced voltage loss at the perovskite/HTL interface because of favorable energy level alignment. The CsPbI2 Br perovskite solar cell demonstrates a record-high efficiency of 16.93 % for dopant-free HTL, and superior moisture and thermal stability by maintaining 96 % efficiency at low-humidity condition (10-25 % R. H.) for 1500â hours and over 95 % efficiency after annealing at 85 °C for 1000â hours.
RESUMEN
Influenza viruses exacerbate chronic obstructive pulmonary disease (COPD) with considerable morbidity and mortality. Zanamivir and oseltamivir are effective in treating influenza. However, their efficacy in relieving influenza symptoms in COPD patients remains unknown, with the lack of controlled trials in this subject. Therefore, we conducted this randomized controlled trial to investigate the clinical efficacy of both interventions in this population. Patients were allocated to two groups (80 patients each): oseltamivir (OSELTA) and zanamivir (ZANA) groups. Oseltamivir (75 mg) was orally administered twice daily for 5 days, while zanamivir (10 mg) was inhaled twice daily for 5 days. Clinical parameters including body temperature, influenza symptoms (i.e., sore throat, cough, etc.), and serial blood tests were recorded on days 1, 3, and 7. We analyzed primary (changes in body temperature) and secondary outcomes (changes in non-specific symptoms) using the pre-protocol and intention-to-treat analyses. Differences between groups were assessed using t-test. Oseltamivir and zanamivir significantly reduced body temperature on the 3rd day after treatment; however, the number of patients who reported clinical improvement in influenza-like symptoms was significantly higher in the OSELTA group compared to the ZANA group on days 3 (85 vs 68.8%, P=0.015) and 7 (97.5 vs 83.8%, P=0.003). However, no significant changes in hematological (white blood cells and its subtypes) and inflammatory (C-reactive protein) parameters were noted (P>0.05). Our results suggested that oseltamivir and zanamivir are effective in reducing body temperature, while oseltamivir led to better clinical improvement regarding influenza-like symptoms in patients with COPD.
Asunto(s)
Humanos , Masculino , Femenino , Persona de Mediana Edad , Antivirales/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Gripe Humana/tratamiento farmacológico , Oseltamivir/uso terapéutico , Zanamivir/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , NeuraminidasaRESUMEN
Influenza viruses exacerbate chronic obstructive pulmonary disease (COPD) with considerable morbidity and mortality. Zanamivir and oseltamivir are effective in treating influenza. However, their efficacy in relieving influenza symptoms in COPD patients remains unknown, with the lack of controlled trials in this subject. Therefore, we conducted this randomized controlled trial to investigate the clinical efficacy of both interventions in this population. Patients were allocated to two groups (80 patients each): oseltamivir (OSELTA) and zanamivir (ZANA) groups. Oseltamivir (75 mg) was orally administered twice daily for 5 days, while zanamivir (10 mg) was inhaled twice daily for 5 days. Clinical parameters including body temperature, influenza symptoms (i.e., sore throat, cough, etc.), and serial blood tests were recorded on days 1, 3, and 7. We analyzed primary (changes in body temperature) and secondary outcomes (changes in non-specific symptoms) using the pre-protocol and intention-to-treat analyses. Differences between groups were assessed using t-test. Oseltamivir and zanamivir significantly reduced body temperature on the 3rd day after treatment; however, the number of patients who reported clinical improvement in influenza-like symptoms was significantly higher in the OSELTA group compared to the ZANA group on days 3 (85 vs 68.8%, P=0.015) and 7 (97.5 vs 83.8%, P=0.003). However, no significant changes in hematological (white blood cells and its subtypes) and inflammatory (C-reactive protein) parameters were noted (P>0.05). Our results suggested that oseltamivir and zanamivir are effective in reducing body temperature, while oseltamivir led to better clinical improvement regarding influenza-like symptoms in patients with COPD.
Asunto(s)
Antivirales , Gripe Humana/tratamiento farmacológico , Oseltamivir/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica , Zanamivir/uso terapéutico , Antivirales/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuraminidasa , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológicoRESUMEN
In non-fullerene organic solar cells, the long-range structure ordering induced by end-group π-π stacking of fused-ring non-fullerene acceptors is considered as the critical factor in realizing efficient charge transport and high power conversion efficiency. Here, we demonstrate that side-chain engineering of non-fullerene acceptors could drive the fused-ring backbone assembly from a π-π stacking mode to an intermixed packing mode, and to a non-stacking mode to refine its solid-state properties. Different from the above-mentioned understanding, we find that close atom contacts in a non-stacking mode can form efficient charge transport pathway through close side atom interactions. The intermixed solid-state packing motif in active layers could enable organic solar cells with superior efficiency and reduced non-radiative recombination loss compared with devices based on molecules with the classic end-group π-π stacking mode. Our observations open a new avenue in material design that endows better photovoltaic performance.
RESUMEN
To improve the power conversion efficiencies for organic solar cells, it is necessary to enhance light absorption and reduce energy loss simultaneously. Both the lowest singlet (S1) and triplet (T1) excited states need to energertically approach the charge-transfer state to reduce the energy loss in exciton dissociation and by triplet recombination. Meanwhile, the S1 energy needs to be decreased to broaden light absorption. Therefore, it is imperative to reduce the singlet-triplet energy gap (ΔEST ), particularly for the narrow-bandgap materials that determine the device T1 energy. Although maximizing intramolecular push-pull effect can drastically decrease ΔEST , it inevitably results in weak oscillator strength and light absorption. Herein, large oscillator strength (≈3) and a moderate ΔEST (0.4-0.5 eV) are found for state-of-the-art A-D-A small-molecule acceptors (ITIC, IT-4F, and Y6) owing to modest push-pull effect. Importantly, end-group π-π stacking commonly in the films can substantially decrease the S1 energy by nearly 0.1 eV, but the T1 energy is hardly changed. The obtained reduction of ΔEST is crucial to effectively suppress triplet recombination and acquire small exciton dissociation driving force. Thus, end-group π-π stacking is an effective way to achieve both small energy loss and efficient light absorption for high-efficiency organic photovoltaics.