Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Anticancer Res ; 44(9): 3885-3889, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197890

RESUMEN

BACKGROUND/AIM: Pancreatic cancer has a very poor prognosis with a 5-year survival rate of less than 5% among patients with distant metastasis, a figure that has not improved over many decades. Only 10 to 20% patients are candidates for curative surgery at presentation due to the aggressive nature and asymptomatic progression of pancreatic cancer. Although first-line chemotherapy, such as FOLFIRINOX and gemcitabine + nab paclitaxel, improved the median survival from 8.5 to 11.1 months, more effective treatments are immediately needed. The aim of the present study was to evaluate the efficacy of methionine restriction with oral rMETase (o-rMETase) and a low-methionine diet combined with first-line chemotherapy on a patient with stage IV metastatic pancreatic cancer. CASE REPORT: A 63-year-old female was diagnosed with metastatic pancreatic cancer in October 2023. The patient started FOLFIRINOX as first-line chemotherapy in combination with methionine restriction, which comprised o-rMETase 250 units twice a day and a low-methionine diet. The patient was monitored using computed tomography and CA19-9 blood tests. After five months from the start of combination therapy, the size of the primary tumor decreased by 40% along with liver-metastasis regression. The CA19-9 blood marker decreased by 86%. The patient sustains a high performance status and continues the combination therapy without severe side effects. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with first-line chemotherapy, was highly effective in a patient with inoperable stage IV pancreatic cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Liasas de Carbono-Azufre , Metionina , Neoplasias Pancreáticas , Humanos , Femenino , Liasas de Carbono-Azufre/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/sangre , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Metionina/administración & dosificación , Estadificación de Neoplasias , Biomarcadores de Tumor/sangre , Fluorouracilo/administración & dosificación , Antígeno CA-19-9/sangre , Leucovorina/administración & dosificación , Leucovorina/uso terapéutico , Irinotecán/administración & dosificación , Irinotecán/uso terapéutico , Oxaliplatino/administración & dosificación , Oxaliplatino/uso terapéutico , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Administración Oral
2.
Anticancer Res ; 44(9): 3785-3791, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197928

RESUMEN

BACKGROUND/AIM: Drug resistance has been a recalcitrant problem for sarcoma patients for many decades. Trabectedin is a second-line chemotherapy for soft-tissue sarcoma that often leads to resistance and death of the patients. The objective of the present study was to address the issue of trabectedin-chemoresistance in HT1080 fibrosarcoma cells by combining recombinant methioninase (rMETase) with trabectedin and examining their efficacy on trabectedin-resistant fibrosarcoma cells in vitro. MATERIALS AND METHODS: Trabectedin-resistant HT1080 (TR-HT1080) cells were generated by subjecting HT1080 human fibrosarcoma cells to increasing trabectedin concentrations (3.3-8 nM). IC50 values for trabectedin and rMETase were compared for HT1080 and TR-HT1080 cells. TR-HT 1080 cells were placed into four groups to determine synergy of rMETase and trabectedin on TR-HT1080 cells: a control group with no treatment; a group treated with trabectedin (3.3 nM); a group treated with rMETase (0.75 U/ml); and a group treated with both trabectedin (3.3 nM) and rMETase (0.75 U/ml). RESULTS: The IC50 value of trabectedin- on TR-HT1080 cells was 42.9 nM, whereas the IC50 value of trabectedin on the parental HT1080 cells was 3.3 nM, indicating a 13-fold increase. The combination of rMETase (0.75 U/ml) and trabectedin (3.3 nM) was synergistic on TR-HT1080 cells resulting in an inhibition of 64.2% compared to trabectedin alone (5.7%) or rMETase alone (50.5%) (p<0.05). rMETase increased the efficacy of trabectedin 11-fold on trabectedin-resistant fibrosarcoma cells. CONCLUSION: The combined administration of trabectedin and rMETase was synergistic on the viability of TR-HT1080 cells in vitro. The combination of rMETase and trabectedin has promising clinical potential for overcoming chemo-resistance of soft-tissue sarcoma.


Asunto(s)
Antineoplásicos Alquilantes , Liasas de Carbono-Azufre , Dioxoles , Resistencia a Antineoplásicos , Proteínas Recombinantes , Tetrahidroisoquinolinas , Trabectedina , Humanos , Trabectedina/farmacología , Liasas de Carbono-Azufre/administración & dosificación , Liasas de Carbono-Azufre/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Tetrahidroisoquinolinas/farmacología , Tetrahidroisoquinolinas/administración & dosificación , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Dioxoles/farmacología , Dioxoles/uso terapéutico , Dioxoles/administración & dosificación , Proteínas Recombinantes/farmacología , Línea Celular Tumoral , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Sinergismo Farmacológico
3.
Anticancer Res ; 44(9): 3891-3898, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197923

RESUMEN

BACKGROUND/AIM: Positron emission tomography (PET) is an important imaging modality, especially in oncology. [18F]fluorodeoxyglucose PET (FDG-PET) is the most used cancer PET imaging. However, since the elevated glucose use by cancers, termed the Warburg effect, is usually only moderate, FDG often does not provide a strong or well-delineated signal. Malignancies have a stronger addiction to methionine, known as the Hoffman effect, and thus [11C]methionine PET (MET-PET) has demonstrated superiority over FDG-PET in gliomas and other brain tumors. Our team is pioneering the use of MET-PET for tumors of the trunk for both better detection of cancer and to determine candidates for methionine-restriction therapy. The present study provides examples of cancers of organs in the trunk in which MET-PET outperforms FDG-PET in detecting and delineating primary and metastatic cancer. PATIENTS AND METHODS: In all cases, MET-PET and FDG-PET were performed simultaneously. An evaluation of the images was conducted by a nuclear medicine physician. RESULTS: Four cases, including prostate, bladder, esophageal, and breast cancer demonstrated the superiority of MET-PET compared to FDG-PET. CONCLUSION: MET-PET can out-perform FDG PET for accurate detection of primary and metastatic cancer in the trunk and can determine the extent of methionine addiction of cancer, thereby indicating whether cancer patients can benefit from methionine-restriction therapy.


Asunto(s)
Fluorodesoxiglucosa F18 , Metionina , Tomografía de Emisión de Positrones , Radiofármacos , Imagen de Cuerpo Entero , Humanos , Tomografía de Emisión de Positrones/métodos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Imagen de Cuerpo Entero/métodos , Glucosa/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Metástasis de la Neoplasia , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Radioisótopos de Carbono
4.
Anticancer Res ; 44(9): 3777-3783, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197933

RESUMEN

BACKGROUND/AIM: A major challenge in treating soft-tissue sarcoma is the development of drug resistance. Eribulin, an anti-tubulin agent, is used as a second-line chemotherapy for patients with unresectable or metastatic soft-tissue sarcoma. However, most patients with advanced soft-tissue sarcoma are resistant to eribulin and do not survive. Recombinant methioninase (rMETase) targets the fundamental and general hallmark of cancer, methionine addiction, termed the Hoffman Effect. The present study aimed to show how much rMETase could increase the efficacy of eribulin on eribulin-resistant fibrosarcoma cells in vitro. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells were exposed to step-wise increasing concentrations of eribulin from 0.15-0.4 nM to establish eribulin-resistant HT1080 (ER-HT1080). ER-HT1080 cells were cultured in vitro and divided into four groups: untreated control; eribulin treated (0.15 nM); rMETase treated (0.75 U/ml); and eribulin (0.15 nM) plus rMETase (0.75 U/ml) treated. RESULTS: The IC50 of eribulin on ER-HT1080 cells was 0.95 nM compared to the IC50 of 0.15 nM on HT1080 cells, a 6-fold increase. The IC50 of rMETase on ER-HT1080 and HT1080 was 0.87 U/ml and 0.75 U/ml, respectively. The combination of rMETase (0.75 U/ml) and eribulin (0.15 nM) was synergistic on ER-HT1080 cells resulting in an inhibition of 80.1% compared to eribulin alone (5.0%) or rMETase alone (47.1%) (p<0.05). rMETase thus increased the efficacy of eribulin 16-fold on eribulin-resistant fibrosarcoma cells. CONCLUSION: The present study showed that the combination of eribulin and rMETase can overcome high eribulin resistance of fibrosarcoma. The present results demonstrate that combining rMETase with first- or second-line therapy for soft-tissue sarcoma has the potential to overcome the intractable clinical problem of drug-resistant soft-tissue sarcoma.


Asunto(s)
Liasas de Carbono-Azufre , Resistencia a Antineoplásicos , Fibrosarcoma , Furanos , Cetonas , Humanos , Cetonas/farmacología , Furanos/farmacología , Liasas de Carbono-Azufre/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Línea Celular Tumoral , Proteínas Recombinantes/farmacología , Antineoplásicos/farmacología , Sinergismo Farmacológico , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Policétidos Poliéteres
5.
Cancer Diagn Progn ; 4(4): 402-407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962551

RESUMEN

Background/Aim: Androgen-independent prostate cancer (AIPC) is resistant to androgen-depletion therapy and is a recalcitrant disease. Docetaxel is the first-line treatment for AIPC, but has limited efficacy and severe side-effects. All cancers are methionine-addicted, which is termed the Hoffman effect. Recombinant methioninase (rMETase) targets methionine addiction. The purpose of the present study was to determine if the combination of docetaxel and rMETase is effective for AIPC. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of docetaxel and rMETase alone were determined for the human AIPC cell line PC-3 and Hs27 normal human fibroblasts in vitro. The synergistic efficacy for PC-3 and Hs27 using the combination of docetaxel and rMETase at their IC50s for PC-3 was determined. Results: The IC50 of docetaxel for PC-3 and for Hs27 was 0.72 nM and 0.94 nM, respectively. The IC50 of rMETase for PC-3 and for Hs27 was 0.67 U/ml and 0.76 U/ml, respectively. The combination of docetaxel and rMETase was synergistic for PC-3 but not Hs27 cells. Conclusion: The combination of a relatively low concentration of docetaxel and rMETase was synergistic and effective for AIPC. The present results also suggest that the effective concentration of docetaxel can be reduced by using rMETase, which may reduce toxicity. The present results also suggest the future clinical potential of the combination of docetaxel and rMETase for AIPC.

6.
Cancer Diagn Progn ; 4(4): 396-401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962555

RESUMEN

Background/Aim: Rapamycin inhibits the mTOR protein kinase. Methioninase (rMETase), by degrading methionine, targets the methionine addiction of cancer cells and has been shown to improve the efficacy of chemotherapy drugs, reducing their effective doses. Our previous study demonstrated that rapamycin and rMETase work synergistically against colorectal-cancer cells, but not on normal cells, when administered simultaneously in vitro. In the present study, we aimed to further our previous findings by exploring whether  synergy exists between rapamycin and rMETase when used sequentially against HCT-116 colorectal-carcinoma cells, compared to simultaneous administration, in vitro. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line were previously determined using the CCK-8 cell viability assay (11). We then examined the efficacy of rapamycin and rMETase, both at their IC50, administered simultaneously or sequentially on the HCT-116 cell line, with rapamycin administered before rMETase and vice versa. Results: The IC50 for rapamycin and rMETase, determined from previous experiments (11), was 1.38 nM and 0.39 U/ml, respectively, of HCT-116 cells. When rMETase was administered four days before rapamycin, both at the IC50, there was a 30.46% inhibition of HCT-116 cells. When rapamycin was administered four days before rMETase, both at the IC50, there was an inhibition of 41.13%. When both rapamycin and rMETase were simultaneously administered, both at the IC50, there was a 71.03% inhibition. Conclusion: Rapamycin and rMETase have synergistic efficacy against colorectal-cancer cells in vitro when administered simultaneously, but not sequentially.

7.
Anticancer Res ; 44(8): 3261-3268, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39060039

RESUMEN

BACKGROUND/AIM: Doxorubicin is first-line therapy for soft-tissue sarcoma, but patients can develop resistance which is usually fatal. As a novel therapeutic strategy, the present study aimed to determine the synergy of recombinant methioninase (rMETase) and doxorubicin against HT1080 fibrosarcoma cells compared to Hs27 normal fibroblasts, and rMETase efficacy against doxorubicin-resistant HT1080 cells in vitro. MATERIALS AND METHODS: The 50% inhibitory concentrations (IC50) of doxorubicin and rMETase, as well as their combination efficacy, against HT1080 human fibrosarcoma cells, Hs27 normal human fibroblasts and doxorubicin-resistant HT1080 (DR-HT1080) cells were determined. Dual-color HT1080 cells which expressed red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize nuclear fragmentation during treatment. Nuclear fragmentation was observed with an IX71 fluorescence microscope. RESULTS: The IC50 for doxorubicin was 3.3 µM for HT1080 cells, 12.4 µM for DR-HT1080 cells, and 7.25 µM for Hs27 cells. The IC50 for rMETase was 0.75 U/ml for HT1080 cells, 0.42 U/ml for DR-HT1080 cells, and 0.93 U/ml for Hs27 cells. The combination of rMETase and doxorubicin was synergistic against fibrosarcoma cells but not against normal fibroblasts. The combination of doxorubicin plus rMETase also caused more fragmented nuclei than either treatment alone in HT1080 cells. rMETase alone was highly effective against the DR-HT1080 cells as well as the parental HT1080 cells. CONCLUSION: The present results indicate the future clinical potential of rMETase in combination with doxorubicin for fibrosarcoma, including doxorubicin-resistant fibrosarcoma.


Asunto(s)
Liasas de Carbono-Azufre , Doxorrubicina , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Fibrosarcoma , Proteínas Recombinantes , Humanos , Doxorrubicina/farmacología , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Fibrosarcoma/metabolismo , Liasas de Carbono-Azufre/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Proteínas Recombinantes/farmacología , Antibióticos Antineoplásicos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo
8.
Cancer Genomics Proteomics ; 21(4): 395-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944421

RESUMEN

BACKGROUND/AIM: It has been recently demonstrated that a methionine-restricted diet increases the response to immune checkpoint inhibitors (ICIs) via an increase in PD-L1 in a syngeneic mouse colorectal-cancer model. Our laboratory has developed recombinant methioninase (rMETase) to restrict methionine. The aim of the present study was to determine if rMETase can increase PD-L1 expression in a human colorectal cancer cell line in vitro. MATERIALS AND METHODS: We evaluated the half-maximal inhibitory concentration (IC50) value of rMETase on HCT-116 human colorectal cancer cells. HCT-116 cells were treated with rMETase at the IC50 Western immunoblotting was used to compare PD-L1 expression in HCT-116 cells treated with and without rMETase. RESULTS: The IC50 value of rMETase on HCT-116 was 0.79 U/ml. Methionine restriction using rMETase increased PD-L1 expression compared to the untreated control (p<0.05). CONCLUSION: Methionine restriction with rMETase up-regulates PD-L1 expression in human colorectal cancer cells and the combination of rMETase and ICIs may have the potential to improve immunotherapy in human colorectal cancer.


Asunto(s)
Antígeno B7-H1 , Liasas de Carbono-Azufre , Neoplasias Colorrectales , Metionina , Proteínas Recombinantes , Humanos , Liasas de Carbono-Azufre/metabolismo , Metionina/farmacología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Proteínas Recombinantes/farmacología , Células HCT116
9.
Cancer Diagn Progn ; 4(3): 239-243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707720

RESUMEN

Background/Aim: The present study utilized the three-dimensional histoculture drug response assay (HDRA) to determine the efficacy of recombinant methioninase (rMETase) on tumor tissue resected from patients with late-stage cancer, as a functional biomarker of sensitivity to methionine restriction therapy. Patients and Methods: Resected peritoneal-metastatic cancer, including colorectal cancer, pancreatic cancer, ovarian cancer, and pseudomyxoma were placed on Gelform in RPMI 1640 medium for seven days and treated with rMETase from 2.5 U/ml to 20 U/ml. Cell viability was determined using the MTT assay. A total of 48 patients with late-stage cancer underwent testing for rMETase responsiveness using the HDRA. Results: Colorectal cancer and pseudomyxoma had the highest sensitivity to rMETase. Pancreatic and ovarian cancer also responded to rMETase, but to a lesser degree. Conclusion: Patients with tumors with at least 40% sensitivity to rMETase in the HDRA are being considered as candidates for methionine restriction therapy, which includes the use of rMETase in combination with a low-methionine diet.

10.
Anticancer Res ; 44(6): 2359-2367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821601

RESUMEN

BACKGROUND/AIM: The alkylating agent trabectedin, which binds the minor groove of DNA, is second-line therapy for soft-tissue sarcoma but has only moderate efficacy. The aim of the present study was to determine the synergistic efficacy of recombinant methioninase (rMETase) and trabectedin on fibrosarcoma cells in vitro, compared with normal fibroblasts. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and Hs27 normal human fibroblasts, were used. Each cell line was cultured in vitro and divided into four groups: no-treatment control; trabectedin treated; rMETase treated; and trabectedin plus rMETase treated. The dual-color HT1080 cells were used to quantitate nuclear fragmentation in each treatment group. RESULTS: The combination of rMETase and trabectedin was highly synergistic to decrease HT1080 cell viability. In contrast, there was no synergy on Hs27 cells. Moreover, nuclear fragmentation occurred synergistically with the combination of trabectedin and rMETase on dual-color HT1080 cells. CONCLUSION: The combination treatment of trabectedin plus rMETase was highly synergistic on fibrosarcoma cells in vitro suggesting that the combination can improve the outcome of trabectedin alone in future clinical studies. The lack of synergy of rMETase and trabectedin on normal fibroblasts suggests the combination is not toxic to normal cells. Synergy of the two drugs may be due to the high rate of nuclear fragmentation on treated HT1080 cells, and the late-S/G2 cell-cycle block of cancer cells by rMETase, which is a target for trabectedin. The results of the present study suggest the future clinical potential of the combination of rMETase and trabectedin for soft-tissue sarcoma.


Asunto(s)
Liasas de Carbono-Azufre , Supervivencia Celular , Dioxoles , Sinergismo Farmacológico , Fibroblastos , Fibrosarcoma , Tetrahidroisoquinolinas , Trabectedina , Humanos , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Fibrosarcoma/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Trabectedina/farmacología , Liasas de Carbono-Azufre/farmacología , Liasas de Carbono-Azufre/administración & dosificación , Tetrahidroisoquinolinas/farmacología , Dioxoles/farmacología , Supervivencia Celular/efectos de los fármacos , Proteínas Recombinantes/farmacología , Línea Celular Tumoral , Antineoplásicos Alquilantes/farmacología , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos
11.
In Vivo ; 38(3): 1058-1063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688611

RESUMEN

BACKGROUND/AIM: Colorectal cancer (CRC) is the third-leading cause of death in the world. Although the prognosis has improved due to improvement of chemotherapy, metastatic CRC is still a recalcitrant disease, with a 5-year survival of only 13%. Irinotecan (IRN) is used as first-line chemotherapy for patients with unresectable CRC. However, there are severe side effects, such as neutropenia and diarrhea, which are dose-limiting. We have previously shown that methionine restriction (MR), effected by recombinant methioninase (rMETase), lowered the effective dose of IRN of colon-cancer cells in vitro. The aim of the present study was to evaluate the efficacy of the combination of low-dose IRN and MR on colon-cancer in nude mice. MATERIALS AND METHODS: HCT-116 colon-cancer cells were cultured and subcutaneously injected into the flank of nude mice. After the tumor size reached approximately 100 mm3, 18 mice were randomized into three groups; Group 1: untreated control on a normal diet; Group 2: high-dose IRN on a normal diet (2 mg/kg, i.p.); Group 3: low-dose IRN (1 mg/kg i.p.) on MR effected by a methionine-depleted diet. RESULTS: There was no significant difference between the control mice and the mice treated with high-dose IRN, without MR. However, low-dose IRN combined with MR was significantly more effective than the control and arrested colon-cancer growth (p=0.03). Body weight loss was reversible in the mice treated by low-dose IRN combined with MR. CONCLUSION: The combination of low-dose IRN and MR acted synergistically in arresting HCT-116 colon-cancer grown in nude mice. The present study indicates the MR has the potential to reduce the effective dose of IRN in the clinic.


Asunto(s)
Liasas de Carbono-Azufre , Neoplasias del Colon , Irinotecán , Metionina , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Irinotecán/administración & dosificación , Irinotecán/farmacología , Metionina/administración & dosificación , Humanos , Ratones , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Camptotecina/análogos & derivados , Camptotecina/farmacología , Camptotecina/administración & dosificación , Camptotecina/uso terapéutico , Modelos Animales de Enfermedad , Células HCT116 , Línea Celular Tumoral , Carga Tumoral/efectos de los fármacos
12.
In Vivo ; 38(3): 1459-1464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688589

RESUMEN

BACKGROUND/AIM: Gliomas are the most common and recalcitrant malignant primary brain tumors. All cancer types are addicted to methionine, which is a fundamental and general hallmark of cancer known as the Hoffman effect. Particularly glioma cells exhibit methionine addiction. Because of methionine addiction, [11C]-methionine positron emission tomography (MET-PET) is widely used for glioma imaging in clinical practice, which can monitor the extent of methionine addiction. Methionine restriction including recombinant methioninase (rMETase) and a low-methionine diet, has shown high efficacy in preclinical models of gliomas, especially in combination with chemotherapy. The aim of the present study was to determine the efficacy of methionine restriction with oral rMETase (o-rMETase) and a low-methionine diet, combined with radiation and temozolomide (TMZ), on a teenage female patient with high-grade glioma. CASE REPORT: A 16-year-old girl was diagnosed with high-grade glioma. Magnetic resonance imaging (MRI) showed a left temporal-lobe tumor with compression to the left lateral ventricle and narrowing of sulci in the left temporal lobe. After the start of methionine restriction with o-rMETase and a low-methionine diet, along with TMZ combined with radiotherapy, the tumor size shrunk at least 60%, with improvement in the left lateral ventricle and sulci. The patient's condition remains stable for 19 months without severe adverse effects. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with radiation and TMZ as first-line chemotherapy, were highly effective in a patient with high-grade glioma.


Asunto(s)
Liasas de Carbono-Azufre , Glioma , Metionina , Temozolomida , Humanos , Femenino , Glioma/patología , Glioma/tratamiento farmacológico , Glioma/terapia , Temozolomida/administración & dosificación , Temozolomida/uso terapéutico , Metionina/administración & dosificación , Adolescente , Imagen por Resonancia Magnética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Resultado del Tratamiento , Clasificación del Tumor , Tomografía de Emisión de Positrones , Proteínas Recombinantes/administración & dosificación , Terapia Combinada
13.
Anticancer Res ; 44(4): 1499-1504, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538002

RESUMEN

BACKGROUND/AIM: Breast cancer is the most common and the deadliest cancer among women in the world. Treatment options for HER2-positive metastatic breast cancer patients are limited. Trastuzumab deruxtecan (T-DXd), an antibody-drug conjugate (ADC), has recently been introduced as second-line chemotherapy for HER2-positive metastatic breast cancer. The aim of the present study was to evaluate the efficacy of methionine restriction with oral recombinant methioninase (o-rMETase) and a low-methionine diet combined with T-DXd, on a patient with HER2-positive recurrent stage IV breast cancer. CASE REPORT: A 66-year-old female was diagnosed with HER2-positive metastatic breast cancer. Computed tomography (CT) indicated peritoneal dissemination, thickening of the sigmoid colon and splenic flexure and widespread bone metastases. The patient was previously treated with fulvestrant, trastuzumab, pertuzumab, paclitaxel and capecitabine which were ineffective. T-DXd was administered as a second-line chemotherapy. Since the patient experienced strong side effects, the dose of T-Dxd was decreased. The patient began methionine restriction using o-rMETase and a low-methionine diet along with T-DXd. After the start of the combined treatment, CA15-3 and CA27.29, tumor markers for breast cancer, decreased rapidly from a very high level. The levels of both tumor markers are currently normal. Additionally, peritoneal-dissemination nodules, ascites and the thickness of the sigmoid colon and splenic flexure are no longer detected on CT. The patient maintains a high performance status, without severe side effects of the combination treatment. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with T-DXd as second-line chemotherapy, was highly effective in a patient with HER2-positive stage IV breast cancer.


Asunto(s)
Neoplasias de la Mama , Camptotecina/análogos & derivados , Liasas de Carbono-Azufre , Inmunoconjugados , Humanos , Femenino , Anciano , Neoplasias de la Mama/tratamiento farmacológico , Biomarcadores de Tumor , Trastuzumab/uso terapéutico , Metionina , Racemetionina , Dieta , Receptor ErbB-2
14.
Anticancer Res ; 44(3): 929-933, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423628

RESUMEN

BACKGROUND/AIM: Rapamycin and recombinant methioninase (rMETase) have both shown efficacy to target cancer cells. Rapamycin prevents cancer-cell growth by inhibition of the mTOR protein kinase. rMETase, by degrading methionine, targets the methionine addiction of cancer and has been shown to improve the efficacy of chemotherapy drugs. In the present study, we aimed to determine if a synergy exists between rapamycin and rMETase when used in combination against a colorectal-carcinoma cell line, compared to normal fibroblasts, in vitro. MATERIALS AND METHODS: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line and Hs-27 human fibroblasts were determined using the CCK-8 Cell Viability Assay. After calculating the IC50 of each drug, we determined the efficacy of rapamycin and rMETase combined on both HCT-116 and Hs-27. RESULTS: Hs-27 normal fibroblasts were more sensitive to rapamycin than HCT-116 colon-cancer cells (IC50=0.37 nM and IC50=1.38 nM, respectively). HCT-116 cells were more sensitive to rMETase than Hs-27 cells (IC50 0.39 U/ml and IC50 0.96 U/ml, respectively). The treatment of Hs-27 cells with the combination of rapamycin (IC50=0.37 nM) and rMETase (IC50=0.96 U/ml) showed no significant difference in their effect on Hs-27 cell viability compared to the two drugs being used separately. However, the treatment of HCT-116 cells with the combination of rapamycin (IC50=1.38 nM) and rMETase (IC50=0.39 U/ml) was able to decrease cancer-cell viability significantly more than either single-drug treatment. CONCLUSION: Rapamycin and rMETase, when used in combination against colorectal-cancer cells, but not normal fibroblasts, in vitro, have a cancer-specific synergistic effect, suggesting that the combination of these drugs can be used as an effective, targeted cancer therapy.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Sirolimus/farmacología , Liasas de Carbono-Azufre , Neoplasias del Colon/tratamiento farmacológico , Metionina , Células HCT116 , Proteínas Recombinantes
15.
Anticancer Res ; 44(3): 921-928, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423656

RESUMEN

BACKGROUND/AIM: The aim of the present study was to determine the synergy of recombinant methioninase (rMETase) and the anti-tubulin agent eribulin on fibrosarcoma cells, in comparison to normal fibroblasts, in vitro. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells and HS27 human fibroblasts were used for in vitro experiments. Four groups were analyzed in vitro: No-treatment control; eribulin; rMETase; eribulin plus rMETase. Dual-color HT1080 cells which express red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize cytoplasmic and nuclear dynamics during treatment. RESULTS: Eribulin combined with rMETase greatly decreased the viability of HT 1080 cells. In contrast, eribulin combined with rMETase did not show synergy on Hs27 normal fibroblasts. Eribulin combined with rMETase also caused more fragmentation of the nucleus than all other treatments. CONCLUSION: The combination treatment of eribulin plus rMETase demonstrated efficacy on fibrosarcoma cells in vitro. In contrast, normal fibroblasts were resistant to this combination, indicating the potential clinical applicability of the treatment.


Asunto(s)
Liasas de Carbono-Azufre , Fibrosarcoma , Furanos , Cetonas , Policétidos Poliéteres , Humanos , Liasas de Carbono-Azufre/uso terapéutico , Línea Celular Tumoral , Fibrosarcoma/tratamiento farmacológico , Fibroblastos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico
16.
Biochem Biophys Res Commun ; 695: 149418, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176171

RESUMEN

Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine restriction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine-deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved outcome of a currently incurable disease.


Asunto(s)
Neoplasias Encefálicas , Glioma , Temozolomida , Animales , Humanos , Ratones , Antineoplásicos Alquilantes/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Metilasas de Modificación del ADN/farmacología , Metilasas de Modificación del ADN/uso terapéutico , Enzimas Reparadoras del ADN/genética , Resistencia a Antineoplásicos , Glioma/tratamiento farmacológico , Glioma/genética , Metionina/farmacología , Ratones Desnudos , O(6)-Metilguanina-ADN Metiltransferasa , Racemetionina/farmacología , Temozolomida/uso terapéutico , Temozolomida/farmacología , Proteínas Supresoras de Tumor/genética
17.
In Vivo ; 38(1): 253-258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38148095

RESUMEN

BACKGROUND/AIM: Methionine addiction is a fundamental and universal hallmark of cancer, termed the Hoffman effect. Methionine addiction of cancer is greater than glucose addiction, termed the Warburg effect, as shown by the comparison of PET imaging with [11C]methionine and [18F]fluorodeoxyglucose. The aim of the present study was to determine whether [11C]methionine PET (MET-PET) images could be a biomarker of methionine addiction of cancer and potential response to methionine-restriction-based combination chemotherapy. PATIENTS AND METHODS: In the present study a patient with invasive lobular carcinoma of the breast metastatic to axillary lymph nodes was imaged by both MET-PET and [18F]fluorodeoxyglucose PET (FDG-PET) before and after combination treatment with methionine restriction, comprising a low-methionine diet and methioninase, along with first-line chemotherapy. RESULTS: MET-PET gave a much stronger and precise image of the patient's metastatic axillary lymph nodes than FDG-PET. The patient had a complete response to methionine restriction-based chemotherapy as shown by MET-PET. CONCLUSION: MET-PET imaging is a biomarker of methionine-addicted cancer and potential response to methionine-restriction-based chemotherapy.


Asunto(s)
Neoplasias de la Mama , Metionina , Humanos , Femenino , Fluorodesoxiglucosa F18 , Biomarcadores de Tumor , Tomografía de Emisión de Positrones/métodos , Racemetionina , Neoplasias de la Mama/patología , Quimioterapia Combinada , Radiofármacos
18.
Anticancer Res ; 44(1): 31-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159986

RESUMEN

BACKGROUND/AIM: Irinotecan (IRN), a topoisomerase I inhibitor and pro-drug of SN-38, is first-line treatment of colon cancer as part of FOLFIRI and FOLFOXIRI combination chemotherapy. However, IRN causes dose-limiting adverse events such as neutropenia and diarrhea. Dose reductions are sometimes required, which reduce efficacy. Recombinant methioninase (rMETase) targets the fundamental basis of cancer, methionine addiction, known as the Hoffman effect, and enhances the efficacy of numerous chemotherapy drugs. The present study determined the efficacy of rMETase when administered in combination with IRN. MATERIALS AND METHODS: Cell viability was assessed by cultivating the HCT-116 human colorectal cancer cell line in 96-well plates at 1×103 cells per well in Dulbecco's modified Eagle's medium (DMEM). Subsequently, HCT-116 cells were treated with increasing concentrations of SN-38, the active form of IRN, ranging from 0.5 nM to 32 nM, and/or rMETase ranging from 0.125 to 8 U/ml. After treatment for 72 h, the half-maximal inhibitory concentration (IC50) of SN-38 alone and rMETase alone for HCT-116 cells were determined. Using the IC50 concentration of rMETase, we determined the IC50 of SN-38 in combination with rMETase. Cell viability was determined with the cell-counting Kit-8 with the WST-8 reagent.. RESULTS: The IC50 of rMETase alone for the HCT-116 cells was 0.55 U/ml, and the IC50 of IRN (SN-38) alone was 3.50 nM. rMETase at 0.55 U/ml lowered the IC50 of SN-38 to 0.232 nM (p<0.0001), a 15-fold reduction. CONCLUSION: rMETase and IRN are strongly synergistic, giving rise to the possibility of lowering the effective dose of IRN for the treatment of patients with colon cancer, thereby reducing its severe toxicity. This new strategy will allow more patients with cancer to be effectively treated with IRN.


Asunto(s)
Neoplasias del Colon , Humanos , Irinotecán/farmacología , Neoplasias del Colon/tratamiento farmacológico , Liasas de Carbono-Azufre , Células Tumorales Cultivadas , Proteínas Recombinantes
19.
Cancer Diagn Progn ; 3(6): 655-659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927805

RESUMEN

Background/Aim: Regorafenib is a multi-kinase inhibitor, targeting vascular endothelial growth factor receptor 2, fibroblast growth factor receptor 1 and other oncogenic kinases. Regorafenib has efficacy in metastatic colon cancer, but has severe dose-limiting toxicities which cause patients to stop taking the drug. The aim of the present study was to determine if recombinant methioninase (rMETase) could lower the effective concentration of regorafenib in vitro against a colorectal-cancer cell line. Materials and Methods: Firstly, we examined the half-maximal inhibitory concentration (IC50) of regorafenib alone and rMETase alone for the HCT-116 human colorectal-cancer cell line. After that, using the IC50 concentration of each drug, we investigated the efficacy of the combination of regorafenib and rMETase. Results: While both methioninase alone (IC50=0.61 U/ml) and regorafenib alone (IC50=2.26 U/ml) inhibited the viability of HCT-116 cells, the combination of the two agents was more than twice as effective as either alone. Addition of rMETase at 0.61 U/ml lowered the IC50 of regorafenib from 2.26 µM to 1.46 µM. Conclusion: rMETase and regorafenib are synergistic, giving rise to the possibility of lowering the effective dose of regorafenib in patients, thereby reducing its severe toxicity, allowing more cancer patients to be treated with regorafenib.

20.
Cancer Diagn Progn ; 3(6): 649-654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927811

RESUMEN

Background/Aim: Methionine restriction by diet and recombinant methioninase (rMETase) are effective for cancer therapy by themselves or combined with chemotherapy drugs. We previously showed that oral administration of rMETase-producing Escherichia coli JM109 (E. coli JM109-rMETase) can be installed in the mouse microbiome and inhibit colon-cancer growth in a syngeneic mouse model. In the present report, we investigated the efficacy of oral administration of E. coli JM109-rMETase in an orthotopic triple-negative breast cancer (TNBC) cell-line mouse model. Materials and Methods: First, we established orthotopic 4T1 mouse triple-negative breast cancer on an abdominal mammary gland in female athymic nu/nu nude mice aged 4-6 weeks. After tumor growth, 15 mice were divided into three groups of 5. Group 1 was administered phosphate-buffered saline (PBS) orally by gavage twice daily as a control; Group 2 was administered non-recombinant E. coli JM109 competent cells orally by gavage twice daily as a control; Group 3 was administered E. coli JM109-rMETase cells by gavage twice daily for two weeks. Tumor size was measured with calipers twice per week. On day 15, blood methionine level was examined using an HPLC method. Results: Oral administration of E. coli JM109-rMETase inhibited 4T1 TNBC growth significantly compared to the PBS and E. coli JM109 control groups. On day 15, the blood methionine level was significantly lower in the mice administered E. coli JM109-rMETase than in the PBS control. Conclusion: E. coli JM109-rMETase lowered blood methionine levels and inhibited TNBC growth in an orthotopic cell-line mouse model, suggesting future clinical potential against a highly recalcitrant cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA