Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ginseng Res ; 47(3): 420-428, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37252284

RESUMEN

Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 µM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3ß signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.

2.
Front Pharmacol ; 13: 1058012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386225

RESUMEN

Incarvillea compacta Maxim is a traditional Tibetan medicine used to treat inflammation-related diseases, such as pneumonia, fever, jaundice, and otitis media. However, no studies have examined its anti-inflammatory mechanism. To validate the anti-inflammatory activity of I. compacta extract (ICE) and its protective effect on acute alcoholic gastritis, Phytochemicals of I. compacta were identified using Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Lipopolysaccharide (LPS)-induced RAW 264.7 macrophages were used in vitro along with an in vivo a mouse acute gastritis model. Pro-inflammatory mediators and cytokines were measured using the Griess reagent and Cytometric bead array (CBA) assay. Furthermore, inflammation-related molecules were analysed by Western blotting, RNA-Seq, and real-time quantitative PCR (RT-qPCR). The experimental results revealed that ICE decreased the nitric oxide (NO), IL-6, MCP-1, and TNF-α levels in LPS-stimulated RAW 264.7 cells, and downregulated the expression and phosphorylation of PDK1, AKT, and GSK3ß. Moreover, ICE also downregulated the activation of NLRP3. The RNA-Seq analysis revealed that 340 differentially expressed genes (DEGs) response to ICE treatment was enriched in several inflammation-related biological processes. The results of the in vivo mouse acute gastritis model showed that ICE significantly reduced inflammatory lesions in the gastric mucosa and remarkably downregulated the expression of iNOS, TNF-α, IL-1ß, and IL-6 mRNA in gastric tissue. Therefore, the results of this study obtained scientific evidence supporting the use of I. compacta.

3.
Poult Sci ; 101(3): 101643, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35016047

RESUMEN

Conventional chemical disinfectants used for egg disinfection could result in toxic residue and endanger hatchability, chick quality, and pullet growth performance. Slightly acidic electrolyzed water (SAEW) is known as a novel disinfectant for egg sterilization due to its high efficiency and no residue. In this study, a comprehensive assessment of slightly acidic electrolyzed water and benzalkonium bromide solution (BBS) used in the disinfection channel was conducted to assess the microbial count, eggshell quality, and hatchability concomitantly. The results show that the sterilization efficiency of SAEW increased with an increase in available chlorine concentration (ACC), spraying volume, and sterilization duration. SAEW with an ACC of 150 mg/L and 10,000 mg/L benzalkonium bromide solution had the same sterilization rates of approximately 86.2% at a spraying volume of 0.5 mL/egg and sterilization duration of 180 s. Neither had significant effect on eggshell strength or thickness. The eggshell cuticle quality in the benzalkonium bromide group was significantly higher than the control group (no disinfection) and the 150 mg/L SAEW group. The embryo weight, relative embryo weight, hatchability, and embryonic mortality in the SAEW group had no significant differences of those in the benzalkonium bromide group. SAEW should be more popular because of its simple preparation, low cost, and no residue. Our results indicate SAEW is an alternative disinfectant for the sterilization of hatching eggs instead of conventional chemical disinfectants, such as benzalkonium bromide, and give a recommendation is using SAEW as a disinfectant with 150 mg/L ACC, 0.5 mL/egg spray volume, and disinfection for 180 s in the novel disinfection channel.


Asunto(s)
Desinfección , Agua , Animales , Pollos , Desinfección/métodos , Electrólisis/veterinaria , Femenino , Óvulo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA