Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 15(1): 7418, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223140

RESUMEN

Small-molecule compounds that elicit mRNA-selective translation repression have attracted interest due to their potential for expansion of druggable space. However, only a limited number of examples have been reported to date. Here, we show that desmethyl desamino pateamine A (DMDA-PatA) represses translation in an mRNA-selective manner by clamping eIF4A, a DEAD-box RNA-binding protein, onto GNG motifs. By systematically comparing multiple eIF4A inhibitors by ribosome profiling, we found that DMDA-PatA has unique mRNA selectivity for translation repression. Unbiased Bind-n-Seq reveals that DMDA-PatA-targeted eIF4A exhibits a preference for GNG motifs in an ATP-independent manner. This unusual RNA binding sterically hinders scanning by 40S ribosomes. A combination of classical molecular dynamics simulations and quantum chemical calculations, and the subsequent development of an inactive DMDA-PatA derivative reveals that the positive charge of the tertiary amine on the trienyl arm induces G selectivity. Moreover, we identified that DDX3, another DEAD-box protein, is an alternative DMDA-PatA target with the same effects on eIF4A. Our results provide an example of the sequence-selective anchoring of RNA-binding proteins and the mRNA-selective inhibition of protein synthesis by small-molecule compounds.


Asunto(s)
ARN Helicasas DEAD-box , Factor 4A Eucariótico de Iniciación , Biosíntesis de Proteínas , ARN Mensajero , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Simulación de Dinámica Molecular , Ribosomas/metabolismo , Motivos de Nucleótidos , Unión Proteica , Células HEK293 , Compuestos Epoxi , Tiazoles , Macrólidos
2.
J Phys Chem B ; 128(10): 2249-2265, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38437183

RESUMEN

A novel in silico drug design procedure is described targeting the Main protease (Mpro) of the SARS-CoV-2 virus. The procedure combines molecular docking, molecular dynamics (MD), and fragment molecular orbital (FMO) calculations. The binding structure and properties of Mpro were predicted for Nelfinavir (NFV), which had been identified as a candidate compound through drug repositioning, targeting Mpro. Several poses of the Mpro and NFV complexes were generated by docking, from which four docking poses were selected by scoring with FMO energy. Then, each pose was subjected to MD simulation, 100 snapshot structures were sampled from each of the generated MD trajectories, and the structures were evaluated by FMO calculations to rank the pose based on binding energy. Several residues were found to be important in ligand recognition, including Glu47, Asp48, Glu166, Asp187, and Gln189, all of which interacted strongly with NFV. Asn142 is presumably regarded to form hydrogen bonds or CH/π interaction with NFV; however, in the present calculation, their interactions were transient. Moreover, the tert-butyl group of NFV had no interaction with Mpro. Identifying such strong and weak interactions provides candidates for maintaining and substituting ligand functional groups and important suggestions for drug discovery using drug repositioning. Besides the interaction between NFV and the amino acid residues of Mpro, the desolvation effect of the binding pocket also affected the ranking order. A similar procedure of drug design was applied to Lopinavir, and the calculated interaction energy and experimental inhibitory activity value trends were consistent. Our approach provides a new guideline for structure-based drug design starting from a candidate compound whose complex crystal structure has not been obtained.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Nelfinavir/farmacología , SARS-CoV-2 , Simulación de Dinámica Molecular
3.
Mol Pharm ; 20(1): 303-313, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36484773

RESUMEN

We have been investigating the potential of cell-penetrating peptides anchored to polymeric platforms as a novel absorption enhancer which delivers biologics into systemic circulation via mucosal routes. Our previous mouse experiments demonstrated that hyaluronic acid modified with l-octaarginine, a typical cell-penetrating peptide, via a tetraglycine spacer significantly enhanced the mucosal absorption of protein drugs applied into the nasal cavities, irrespective of the molecular weights (Mw) of the drugs. The present study evaluated the performance of tetraglycine-l-octaarginine-linked hyaluronic acid applied via various mucosal routes. Somatropin (Mw: ca. 22.1 kDa) was moderately absorbed from the lung mucosa, and the mean absolute bioavailability (BA) reached 19% under enhancer-free conditions; nevertheless, its BA under intranasal administration was approximately 1% or less. Its BA significantly elevated to 46% on average through intrapulmonary coadministration with tetraglycine-l-octaarginine-linked hyaluronic acid. When the administration site was replaced with the oral cavities, an extreme reduction in somatropin absorption was observed with a mean BA of 0.056% under enhancer-free conditions. Intraoral coadministration with tetraglycine-l-octaarginine-linked hyaluronic acid resulted in a 6.3-fold elevation of somatropin absorption with statistical significance. A similar enhancement was observed under intrarectal administration with a further reduction in BA. On the other hand, the hyaluronic acid derivative did not exhibit the absorption-enhancing ability under intragastric administration, probably due to the lack of stabilization effects against enzyme-susceptible biologics. The results indicated that the intrapulmonary route was suitable for maximizing the mucosal absorption of biologics, and that there was a likelihood of the intraoral route with user convenience. When somatropin was substituted with fluorescein isothiocyanate-conjugated dextran with an average Mw range of 4-70 kDa, similar phenomena were observed under intrapulmonary and intranasal administration. BA decreased with an increase in the Mw of dextran; however, the ratio of BA under enhancer-present conditions to that under enhancer-free conditions was consistently around 3, indicating that the performance of the hyaluronic acid derivative was Mw-independent, irrespective of the administration route.


Asunto(s)
Péptidos de Penetración Celular , Hormona de Crecimiento Humana , Ratones , Animales , Péptidos de Penetración Celular/química , Mucosa Nasal/metabolismo , Dextranos/farmacología , Ácido Hialurónico/metabolismo , Hormona de Crecimiento Humana/metabolismo , Hormona de Crecimiento Humana/farmacología , Administración Intranasal
4.
J Chem Inf Model ; 61(9): 4594-4612, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506132

RESUMEN

SARS-CoV-2 is the causative agent of coronavirus (known as COVID-19), the virus causing the current pandemic. There are ongoing research studies to develop effective therapeutics and vaccines against COVID-19 using various methods and many results have been published. The structure-based drug design of SARS-CoV-2-related proteins is promising, however, reliable information regarding the structural and intra- and intermolecular interactions is required. We have conducted studies based on the fragment molecular orbital (FMO) method for calculating the electronic structures of protein complexes and analyzing their quantitative molecular interactions. This enables us to extensively analyze the molecular interactions in residues or functional group units acting inside the protein complexes. Such precise interaction data are available in the FMO database (FMODB) (https://drugdesign.riken.jp/FMODB/). Since April 2020, we have performed several FMO calculations on the structures of SARS-CoV-2-related proteins registered in the Protein Data Bank. We have published the results of 681 structures, including three structural proteins and 11 nonstructural proteins, on the COVID-19 special page (as of June 8, 2021). In this paper, we describe the entire COVID-19 special page of the FMODB and discuss the calculation results for various proteins. These data not only aid the interpretation of experimentally determined structures but also the understanding of protein functions, which is useful for rational drug design for COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacunas contra la COVID-19 , Humanos , Pandemias , Proteínas
5.
J Chem Inf Model ; 60(7): 3593-3602, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32539372

RESUMEN

The worldwide spread of COVID-19 (new coronavirus found in 2019) is an emergent issue to be tackled. In fact, a great amount of works in various fields have been made in a rather short period. Here, we report a fragment molecular orbital (FMO) based interaction analysis on a complex between the SARS-CoV-2 main protease (Mpro) and its peptide-like inhibitor N3 (PDB ID: 6LU7). The target inhibitor molecule was segmented into five fragments in order to capture site specific interactions with amino acid residues of the protease. The interaction energies were decomposed into several contributions, and then the characteristics of hydrogen bonding and dispersion stabilization were made clear. Furthermore, the hydration effect was incorporated by the Poisson-Boltzmann (PB) scheme. From the present FMO study, His41, His163, His164, and Glu166 were found to be the most important amino acid residues of Mpro in interacting with the inhibitor, mainly due to hydrogen bonding. A guideline for optimizations of the inhibitor molecule was suggested as well based on the FMO analysis.


Asunto(s)
Betacoronavirus/enzimología , Cisteína Endopeptidasas/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Unión Proteica , Conformación Proteica , SARS-CoV-2 , Proteínas no Estructurales Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA