Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
JACS Au ; 3(2): 526-535, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36873699

RESUMEN

The Angstrom-scale space between graphene and its substrate provides an attractive playground for scientific exploration and can lead to breakthrough applications. Here, we report the energetics and kinetics of hydrogen electrosorption on a graphene-covered Pt(111) electrode using electrochemical experiments, in situ spectroscopy, and density functional theory calculations. The graphene overlayer influences the hydrogen adsorption on Pt(111) by shielding the ions from the interface and weakening the Pt-H bond energy. Analysis of the proton permeation resistance with controlled graphene defect density proves that the domain boundary defects and point defects are the pathways for proton permeation in the graphene layer, in agreement with density functional theory (DFT) calculations of the lowest energy proton permeation pathways. Although graphene blocks the interaction of anions with the Pt(111) surfaces, anions do adsorb near the defects: the rate constant for hydrogen permeation is sensitively dependent on anion identity and concentration.

2.
J Chem Phys ; 158(1): 014703, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36610959

RESUMEN

Surface platinum hydride structures may exist and play a potentially important role during electrocatalysis and cathodic corrosion of Pt(111). Earlier work on platinum hydrides suggests that Pt may form clusters with multiple equivalents of hydrogen. Here, using thermodynamic methods and density functional theory, we compared several surface hydride structures on Pt(111). The structures contain multiple monolayers of hydrogen in or near the surface Pt layer. The hydrogen in these structures may bind the subsurface or reconstruct the surface both in the set of initial configurations and in the resulting (meta)stable structures. Multilayer stable configurations share one monolayer of subsurface H stacking between the top two Pt layers. The structure containing two monolayers (MLs) of H is formed at -0.29 V vs normal hydrogen electrode, is locally stable with respect to configurations with similar H densities, and binds H neutrally. Structures with 3 and 4 ML H form at -0.36 and -0.44 V, respectively, which correspond reasonably well to the experimental onset potential of cathodic corrosion on Pt(111). For the 3 ML configuration, the top Pt layer is reconstructed by interstitial H atoms to form a well-ordered structure with Pt atoms surrounded by four, five, or six H atoms in roughly square-planar and octahedral coordination patterns. Our work provides insight into the operando surface state during low-potential reduction reactions on Pt(111) and shows a plausible precursor for cathodic corrosion.

3.
Phys Chem Chem Phys ; 25(4): 3211-3219, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36625180

RESUMEN

Solvent-adsorbate interactions have a great impact on catalytic processes in aqueous systems. Implicit solvent calculations are inexpensive but inaccurate toward hydrogen bonds, while a full incorporation of explicit solvation is computationally demanding. Micro-solvation attempts to break this dilemma by including only those solvent molecules directly interacting with the solute and any nearby interfaces, thereby providing a compromise between accuracy and computational expenses. Here, we show that micro-solvation of *OH and its relation to adsorption sites is largely transferable across late transition metal nanoparticles. Solvation energies for *OH on nanoparticles of Ir, Pd, and Pt range from -0.63 ± 0.04 eV to -0.67 ± 0.12 eV, while those on Au and Ag are -0.75 ± 0.07 eV and -1.01 ± 0.05 eV, respectively. These results enable the use of average solvation corrections for *OH on late transition metal nanostructures.

4.
Phys Chem Chem Phys ; 22(19): 10634-10640, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31701114

RESUMEN

This paper examines the thermodynamics of PtO2 stripes formed as intermediates of Pt(111) surface oxidation as a function of the degree of dilation parallel to the stripes, using density functional theory and atomistic thermodynamics. Internal energy calculations predict 7/8 and 8/9 stripe structures to dominate at standard temperature and pressure, which contain 7 or 8 elevated PtO2 units per 8 or 9 supporting surface Pt atoms, respectively. Moreover, we found a thermodynamic optimum with respect to mean in-stripe Pt-Pt spacing close to that of α-PtO2. Vibrational zero point energies, including bulk layer contributions, make a small but significant contribution to the stripe free energies, leading to the 6/7 stripe being most stable, although the 7/8 structure is still close in free energy. These findings correspond closely to experimental observations, providing insight into the driving force for oxide stripe formation and structure as the initial intermediate of platinum surface oxidation, and aiding our understanding of platinum catalysts and surface roughening under oxidative conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA