Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320341

RESUMEN

Wilms tumors are commonly associated with predisposition syndromes many, but not all, of which include overgrowth. Several of these syndromes also include a risk of other embryonal malignancies - particularly hepatoblastoma. Guidelines for surveillance in this population were published in 2017 and recently members of the AACR Pediatric Cancer Working Group met to update those guidelines with a review of more recently published evidence and risk estimates. This perspective serves to update pediatric oncologists, geneticists, radiologists, counselors and other healthcare professionals on revised diagnostic criteria, review previously published surveillance guidelines and harmonize updated surveillance recommendations in the North American and Australian context for patients with overgrowth syndromes and other syndromes associated with Wilms tumor predisposition.

3.
J Immunother Cancer ; 12(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39111833

RESUMEN

BACKGROUND: High-grade gliomas including glioblastoma (GBM) and diffuse midline gliomas (DMG) represent the most lethal and aggressive brain cancers where current treatment modalities offer limited efficacy. Chimeric antigen receptor (CAR) T cell therapies have emerged as a promising strategy, boasting tumor-specific targeting and the unique ability to penetrate the blood-brain barrier. However, the effective clinical application hinges on the optimal choice of antigen, with a limited number, currently under investigation. METHODS: We employed cell surface proteomic analysis of primary human high-grade glioma samples from both adult and pediatric patients. This led to the identification of Ephrin type-A receptor 3 (EphA3) as a prevalently expressed target. We engineered a second-generation EphA3-targeted CAR T cell and assessed function using in vitro and in vivo models of GBM and DMG. RESULTS: EphA3-targeted CAR T cells demonstrated robust antigen-specific killing of human GBM and DMG cell lines in vitro. In an orthotopic xenograft NSG mouse model, EphA3-targeted CAR T cells not only effectively eradicated tumors but also established a functional T cell population protective on rechallenge. Remarkably, mice rechallenged with a second contralateral orthotopic tumor implantation achieved complete tumor clearance and maintained a sustained complete response 6 months following initial treatment. CONCLUSION: Building on the proven safety profile of EphA3 antibodies in clinical settings, our study provides compelling preclinical evidence supporting the efficacy of EphA3-targeted CAR T cells against high-grade gliomas. These findings underscore the potential for transitioning this innovative therapy into clinical trials, aiming to revolutionize the treatment landscape for patients afflicted with these formidable brain cancers.


Asunto(s)
Glioma , Receptor EphA3 , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Glioma/terapia , Glioma/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Femenino , Memoria Inmunológica
4.
Clin Cancer Res ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196581

RESUMEN

Neurofibromatosis type 1 (NF1), Noonan syndrome and related syndromes, grouped as the RASopathies, result from dysregulation of the RAS-MAPK pathway and demonstrate varied multisystemic clinical phenotypes. Together the RASopathies are among the more prevalent genetic cancer predisposition syndromes and require nuanced clinical management. When compared to the general population, children with RASopathies are at significantly increased risk of benign and malignant neoplasms. In the last decade, clinical trials have shown that targeted therapies can improve outcomes for low-grade and benign neoplastic lesions but have their own challenges, highlighting the multi-disciplinary care needed for such individuals, specifically those with NF1. This perspective, which originated from the 2023 AACR Childhood Cancer Predisposition Workshop, serves to update pediatric oncologists, neurologists, geneticists, counselors, and other healthcare professionals on revised diagnostic criteria, review previously published surveillance guidelines, and harmonize updated surveillance recommendations for patients with NF1 or RASopathies.

5.
Neuro Oncol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073785

RESUMEN

Pineal parenchymal tumors are rare neoplasms for which evidence-based treatment recommendations are lacking. These tumors vary in biology, clinical characteristics, and prognosis, requiring treatment that ranges from surgical resection alone to intensive multimodal antineoplastic therapy. Recently, international collaborative studies have shed light on the genomic landscape of these tumors, leading to refinement in molecular-based disease classification in the 5th edition of the World Health Organization (WHO) classification of tumors of the central nervous system. In this review, we summarize the literature on diagnostic and therapeutic approaches, and suggest pragmatic recommendations for the clinical management of patients presenting with intrinsic pineal region masses including parenchymal tumors (pineocytoma, pineal parenchymal tumor of intermediate differentiation, and pineoblastoma), pineal cyst, and papillary tumors of the pineal region.

6.
Clin Cancer Res ; 30(15): 3137-3143, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860978

RESUMEN

Genetic predisposition to neuroblastoma (NB) is relatively rare. Only 1% to 2% of patients have a family history of NB, 3% to 4% of cases present with bilateral or multifocal primary tumors, and occasional patients have syndromes that are associated with increased NB risk. Previously, a germline pathogenic variant (GPV) in PHOX2B was associated with Hirschsprung disease and congenital central hypoventilation syndrome. Recently, certain GPVs were shown to be responsible for congenital central hypoventilation syndrome and NB predisposition. Also, several groups determined that activating GPVs in ALK accounted for a substantial number of familial NB. Finally, there are additional genes and cancer predisposition syndromes in which NB occurs with greater frequency or that have been associated with NB based on genome-wide association studies. We review the evidence for all these genes and whether there is sufficient evidence to warrant surveillance. We review recommended surveillance for hereditary patients with NB, including minor updates to surveillance recommendations that were published previously in 2017.


Asunto(s)
Predisposición Genética a la Enfermedad , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/epidemiología , Neuroblastoma/patología , Niño , Estudio de Asociación del Genoma Completo , Factores de Transcripción , Proteínas de Homeodominio
7.
Nat Med ; 30(7): 1913-1922, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38844796

RESUMEN

Recent research showed that precision medicine can identify new treatment strategies for patients with childhood cancers. However, it is unclear which patients will benefit most from precision-guided treatment (PGT). Here we report consecutive data from 384 patients with high-risk pediatric cancer (with an expected cure rate of less than 30%) who had at least 18 months of follow-up on the ZERO Childhood Cancer Precision Medicine Program PRecISion Medicine for Children with Cancer (PRISM) trial. A total of 256 (67%) patients received PGT recommendations and 110 (29%) received a recommended treatment. PGT resulted in a 36% objective response rate and improved 2-year progression-free survival compared with standard of care (26% versus 12%; P = 0.049) or targeted agents not guided by molecular findings (26% versus 5.2%; P = 0.003). PGT based on tier 1 evidence, PGT targeting fusions or commenced before disease progression had the greatest clinical benefit. Our data show that PGT informed by comprehensive molecular profiling significantly improves outcomes for children with high-risk cancers. ClinicalTrials.gov registration: NCT03336931.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Niño , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Femenino , Masculino , Adolescente , Preescolar , Lactante , Supervivencia sin Progresión , Resultado del Tratamiento
8.
Clin Cancer Res ; 30(16): 3378-3387, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38860976

RESUMEN

Replication repair deficiency (RRD) is a pan-cancer mechanism characterized by abnormalities in the DNA mismatch repair (MMR) system due to pathogenic variants in the PMS2, MSH6, MSH2, or MLH1 genes, and/or in the polymerase-proofreading genes POLE and POLD1. RRD predisposition syndromes (constitutional MMR deficiency, Lynch, and polymerase proofreading-associated polyposis) share overlapping phenotypic and biological characteristics. Moreover, cancers stemming from germline defects of one mechanism can acquire somatic defects in another, leading to complete RRD. Here we describe the recent advances in the diagnostics, surveillance, and clinical management for children with RRD syndromes. For patients with constitutional MMR deficiency, new data combining clinical insights and cancer genomics have revealed genotype-phenotype associations and helped in the development of novel functional assays, diagnostic guidelines, and surveillance recommendations. Recognition of non-gastrointestinal/genitourinary malignancies, particularly aggressive brain tumors, in select children with Lynch and polymerase proofreading-associated polyposis syndromes harboring an RRD biology have led to new management considerations. Additionally, universal hypermutation and microsatellite instability have allowed immunotherapy to be a paradigm shift in the treatment of RRD cancers independent of their germline etiology. These advances have also stimulated a need for expert recommendations about genetic counseling for these patients and their families. Future collaborative work will focus on newer technologies such as quantitative measurement of circulating tumor DNA and functional genomics to tailor surveillance and clinical care, improving immune surveillance; develop prevention strategies; and deliver these novel discoveries to resource-limited settings to maximize benefits for patients globally.


Asunto(s)
Trastornos por Deficiencias en la Reparación del ADN , Humanos , Niño , Trastornos por Deficiencias en la Reparación del ADN/genética , Trastornos por Deficiencias en la Reparación del ADN/diagnóstico , Adulto Joven , Adolescente , Reparación de la Incompatibilidad de ADN/genética , Replicación del ADN/genética , Predisposición Genética a la Enfermedad , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/terapia , Síndromes Neoplásicos Hereditarios/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/terapia , Inestabilidad de Microsatélites
9.
Med J Aust ; 220(10): 533-538, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699949

RESUMEN

INTRODUCTION: The main mission of the Australian and New Zealand Children's Haematology and Oncology Group (ANZCHOG) is to develop and facilitate local access to the world's leading evidence-based clinical trials for all paediatric cancers, including brain tumours, as soon as practically possible. Diffuse intrinsic pontine gliomas (DIPGs) - a subset of a larger group of tumours now termed diffuse midline glioma, H3K27-altered (DMG) - are paediatric brain cancers with less than 10% survival at two years. In the absence of any proven curative therapies, significant recent advancements have been made in pre-clinical and clinical research, leading many to seek integration of novel therapies early into standard practice. Despite these innovative therapeutic approaches, DIPG remains an incurable disease for which novel surgical, imaging, diagnostic, radiation and systemic therapy approaches are needed. MAIN RECOMMENDATIONS: All patients with DIPG should be discussed in multidisciplinary neuro-oncology meetings (including pathologists, neuroradiologists, radiation oncologists, neurosurgeons, medical oncologists) at diagnosis and at relapse or progression. Radiation therapy to the involved field remains the local and international standard of care treatment. Proton therapy does not yield a superior survival outcome compared with photon therapy and patients should undergo radiation therapy with the available modality (photon or proton) at their treatment centre. Patients may receive concurrent chemotherapy or radiation-sensitising agents as part of a clinical trial. Biopsy should be offered to facilitate consideration of experimental therapies and eligibility for clinical trial participation. After radiation therapy, each patient should be managed individually with either observation or considered for enrolment on a clinical trial, if eligible, after full discussion with the family. Re-irradiation can be considered for progressive disease. CHANGES IN MANAGEMENT AS A RESULT OF THE GUIDELINE: Every child diagnosed with DIPG should be offered enrolment on a clinical trial where available. Access to investigational drugs without biological rationale outside the clinical trial setting is not supported. In case of potentially actionable target identification with molecular profiling and absence of a suitable clinical trial, rational targeted therapies can be considered through compassionate access programs.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Nueva Zelanda , Neoplasias del Tronco Encefálico/terapia , Neoplasias del Tronco Encefálico/diagnóstico , Australia , Niño , Glioma Pontino Intrínseco Difuso/terapia , Glioma Pontino Intrínseco Difuso/diagnóstico
10.
Clin Cancer Res ; 30(11): 2342-2350, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38573059

RESUMEN

Tumors of the central nervous system (CNS) comprise the second most common group of neoplasms in childhood. The incidence of germline predisposition among children with brain tumors continues to grow as our knowledge on disease etiology increases. Some children with brain tumors may present with nonmalignant phenotypic features of specific syndromes (e.g., nevoid basal cell carcinoma syndrome, neurofibromatosis type 1 and type 2, DICER1 syndrome, and constitutional mismatch-repair deficiency), while others may present with a strong family history of cancer (e.g., Li-Fraumeni syndrome) or with a rare tumor commonly found in the context of germline predisposition (e.g., rhabdoid tumor predisposition syndrome). Approximately 50% of patients with a brain tumor may be the first in a family identified to have a predisposition. The past decade has witnessed a rapid expansion in our molecular understanding of CNS tumors. A significant proportion of CNS tumors are now well characterized and known to harbor specific genetic changes that can be found in the germline. Additional novel predisposition syndromes are also being described. Identification of these germline syndromes in individual patients has not only enabled cascade testing of family members and early tumor surveillance but also increasingly affected cancer management in those patients. Therefore, the AACR Cancer Predisposition Working Group chose to highlight these advances in CNS tumor predisposition and summarize and/or generate surveillance recommendations for established and more recently emerging pediatric brain tumor predisposition syndromes.


Asunto(s)
Neoplasias Encefálicas , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Síndromes Neoplásicos Hereditarios , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/diagnóstico , Niño , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/epidemiología , Pruebas Genéticas , Guías de Práctica Clínica como Asunto
12.
J Clin Invest ; 134(6)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319732

RESUMEN

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Ratones , Animales , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinasas/genética , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Serina-Treonina Quinasas TOR/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Glucosa , Metformina/farmacología , Microambiente Tumoral
13.
Neuro Oncol ; 26(1): 25-37, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37944912

RESUMEN

The most common childhood central nervous system (CNS) tumor is pediatric low-grade glioma (pLGG), representing 30%-40% of all CNS tumors in children. Although there is high associated morbidity, tumor-related mortality is relatively rare. pLGG is now conceptualized as a chronic disease, underscoring the importance of functional outcomes and quality-of-life measures. A wealth of data has emerged about these tumors, including a better understanding of their natural history and their molecular drivers, paving the way for the use of targeted inhibitors. While these treatments have heralded tremendous promise, challenges remain about how to best optimize their use, and the long-term toxicities associated with these inhibitors remain unknown. The International Pediatric Low-Grade Glioma Coalition (iPLGGc) is a global group of physicians and scientists with expertise in pLGG focused on addressing key pLGG issues. Here, the iPLGGc provides an overview of the current state-of-the-art in pLGG, including epidemiology, histology, molecular landscape, treatment paradigms, survival outcomes, functional outcomes, imaging response, and ongoing challenges. This paper also serves as an introduction to 3 other pLGG manuscripts on (1) pLGG preclinical models, (2) consensus framework for conducting early-phase clinical trials in pLGG, and (3) pLGG resistance, rebound, and recurrence.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Glioma/terapia , Glioma/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf
14.
Nat Med ; 30(1): 207-217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37978284

RESUMEN

BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system-penetrant, type II RAF inhibitor tovorafenib (420 mg m-2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485 .


Asunto(s)
Luciérnagas , Glioma , Humanos , Niño , Animales , Proteínas Proto-Oncogénicas B-raf/genética , Glioma/tratamiento farmacológico , Glioma/genética
16.
N Engl J Med ; 389(12): 1108-1120, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37733309

RESUMEN

BACKGROUND: Detection of the BRAF V600E mutation in pediatric low-grade glioma has been associated with a lower response to standard chemotherapy. In previous trials, dabrafenib (both as monotherapy and in combination with trametinib) has shown efficacy in recurrent pediatric low-grade glioma with BRAF V600 mutations, findings that warrant further evaluation of this combination as first-line therapy. METHODS: In this phase 2 trial, patients with pediatric low-grade glioma with BRAF V600 mutations who were scheduled to receive first-line therapy were randomly assigned in a 2:1 ratio to receive dabrafenib plus trametinib or standard chemotherapy (carboplatin plus vincristine). The primary outcome was the independently assessed overall response (complete or partial response) according to the Response Assessment in Neuro-Oncology criteria. Also assessed were the clinical benefit (complete or partial response or stable disease for ≥24 weeks) and progression-free survival. RESULTS: A total of 110 patients underwent randomization (73 to receive dabrafenib plus trametinib and 37 to receive standard chemotherapy). At a median follow-up of 18.9 months, an overall response occurred in 47% of the patients treated with dabrafenib plus trametinib and in 11% of those treated with chemotherapy (risk ratio, 4.31; 95% confidence interval [CI], 1.7 to 11.2; P<0.001). Clinical benefit was observed in 86% of the patients receiving dabrafenib plus trametinib and in 46% receiving chemotherapy (risk ratio, 1.88; 95% CI, 1.3 to 2.7). The median progression-free survival was significantly longer with dabrafenib plus trametinib than with chemotherapy (20.1 months vs. 7.4 months; hazard ratio, 0.31; 95% CI, 0.17 to 0.55; P<0.001). Grade 3 or higher adverse events occurred in 47% of the patients receiving dabrafenib plus trametinib and in 94% of those receiving chemotherapy. CONCLUSIONS: Among pediatric patients with low-grade glioma with BRAF V600 mutations, dabrafenib plus trametinib resulted in significantly more responses, longer progression-free survival, and a better safety profile than standard chemotherapy as first-line therapy. (Funded by Novartis; ClinicalTrials.gov number, NCT02684058.).


Asunto(s)
Antineoplásicos , Glioma , Proteínas Proto-Oncogénicas B-raf , Niño , Humanos , Glioma/tratamiento farmacológico , Glioma/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Antineoplásicos/uso terapéutico
17.
Genet Med ; 25(12): 100969, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37634128

RESUMEN

PURPOSE: PIK3CA-related overgrowth spectrum (PROS) encompasses several rare conditions resulting from activating variants in PIK3CA. Alpelisib, a PI3Kα-selective inhibitor, targets the underlying etiology of PROS, offering a novel therapeutic approach to current management strategies. This study evaluated the safety and efficacy of alpelisib in pediatric and adult patients with PROS. METHODS: EPIK-P1 (NCT04285723) was a non-interventional, retrospective chart review of 57 patients with PROS (≥2 years) treated with alpelisib through compassionate use. Patients had severe/life-threatening PROS-related conditions and confirmed PIK3CA pathogenic variant. The primary end point assessed patient response to treatment at Week 24 (6 months). RESULTS: Twenty-four weeks (6 months) after treatment initiation, 12 of 32 (37.5%) patients with complete case records included in the analysis of the primary end point experienced a ≥20% reduction in target lesion(s) volume. Additional clinical benefit independent from lesion volume reduction was observed across the full study population. Adverse events (AEs) and treatment-related AEs were experienced by 82.5% (47/57) and 38.6% (22/57) of patients, respectively; the most common treatment-related AEs were hyperglycemia (12.3%) and aphthous ulcer (10.5%). No deaths occurred. CONCLUSION: EPIK-P1 provides real-world evidence of alpelisib effectiveness and safety in patients with PROS and confirms PI3Kα as a valid therapeutic target for PROS symptom management.


Asunto(s)
Tiazoles , Adulto , Humanos , Niño , Estudios Retrospectivos , Mutación , Tiazoles/efectos adversos , Fosfatidilinositol 3-Quinasa Clase I/genética
18.
J Mol Diagn ; 25(10): 709-728, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517472

RESUMEN

DNA methylation array profiling for classifying pediatric central nervous system (CNS) tumors is a valuable adjunct to histopathology. However, unbiased prospective and interlaboratory validation studies have been lacking. The AIM BRAIN diagnostic trial involving 11 pediatric cancer centers in Australia and New Zealand was designed to test the feasibility of routine clinical testing and ran in parallel with the Molecular Neuropathology 2.0 (MNP2.0) study at Deutsches Krebsforschungszentrum (German Cancer Research Center). CNS tumors from 269 pediatric patients were prospectively tested on Illumina EPIC arrays, including 104 cases co-enrolled on MNP2.0. Using MNP classifier versions 11b4 and 12.5, we report classifications with a probability score ≥0.90 in 176 of 265 (66.4%) and 213 of 269 (79.2%) cases, respectively. Significant diagnostic information was obtained in 130 of 176 (74%) for 11b4, and 12 of 174 (7%) classifications were discordant with histopathology. Cases prospectively co-enrolled on MNP2.0 gave concordant classifications (99%) and score thresholds (93%), demonstrating excellent test reproducibility and sensitivity. Overall, DNA methylation profiling is a robust single workflow technique with an acceptable diagnostic yield that is considerably enhanced by the extensive subgroup and copy number profile information generated by the platform. The platform has excellent test reproducibility and sensitivity and contributes significantly to CNS tumor diagnosis.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Metilación de ADN , Niño , Humanos , Australia , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Metilación de ADN/genética , Nueva Zelanda , Estudios Prospectivos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA