Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain Behav Immun ; 119: 6-13, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552921

RESUMEN

When organisms move into new areas, they are likely to encounter novel food resources. Even if they are nutritious, these foods can also be risky, as they might be contaminated by parasites. The behavioural immune system of animals could help them avoid the negative effects of contaminated resources, but our understanding of behavioural immunity is limited, particularly whether and how behavioural immunity interacts with physiological immunity. Here, we asked about the potential for interplay between these two traits, specifically how the propensity of an individual house sparrow (Passer domesticus) to take foraging risks was related to its ability to regulate a key facet of its immune response to bacterial pathogens. Previously, we found that sparrows at expanding geographic range edges were more exploratory and less risk-averse to novel foods; in those same populations, birds tended to over-express Toll-like receptor 4 (TLR4), a pattern-recognition receptor that distinguishes cell-wall components of Gram-negative bacteria, making it the major sensor of potentially lethal gut microbial infections including salmonellosis. When we investigated how birds would respond to a typical diet (i.e., mixed seeds) spiked with domesticated chicken faeces, birds that expressed more TLR4 or had higher epigenetic potential for TLR4 (more CpG dinucleotides in the putative gene promoter) ate more food, spiked or not. Females expressing abundant TLR4 were also willing to take more foraging risks and ate more spiked food. In males, TLR4 expression was not associated with risk-taking. Altogether, our results indicate that behaviour and immunity covary among individual house sparrows, particularly in females where those birds that maintain more immune surveillance also are more disposed to take foraging risks.


Asunto(s)
Epigénesis Genética , Conducta Alimentaria , Gorriones , Animales , Gorriones/inmunología , Femenino , Conducta Alimentaria/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Asunción de Riesgos , Expresión Génica , Pollos/inmunología , Masculino , Conducta Animal/fisiología
2.
J Exp Biol ; 226(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37313881

RESUMEN

Animals encounter many novel and unpredictable challenges when moving into new areas, including pathogen exposure. Because effective immune defenses against such threats can be costly, plastic immune responses could be particularly advantageous, as such defenses can be engaged only when context warrants activation. DNA methylation is a key regulator of plasticity via its effects on gene expression. In vertebrates, DNA methylation occurs exclusively at CpG dinucleotides and, typically, high DNA methylation decreases gene expression, particularly when it occurs in promoters. The CpG content of gene regulatory regions may therefore represent one form of epigenetic potential (EP), a genomic means to enable gene expression and hence adaptive phenotypic plasticity. Non-native populations of house sparrows (Passer domesticus) - one of the world's most cosmopolitan species - have high EP in the promoter of a key microbial surveillance gene, Toll-like receptor 4 (TLR4), compared with native populations. We previously hypothesized that high EP may enable sparrows to balance the costs and benefits of inflammatory immune responses well, a trait critical to success in novel environments. In the present study, we found support for this hypothesis: house sparrows with high EP in the TLR4 promoter were better able to resist a pathogenic Salmonella enterica infection than sparrows with low EP. These results support the idea that high EP contributes to invasion and perhaps adaptation in novel environments, but the mechanistic details whereby these organismal effects arise remain obscure.


Asunto(s)
Salmonella enterica , Gorriones , Animales , Receptor Toll-Like 4/genética , Salmonella enterica/genética , Gorriones/fisiología , Epigénesis Genética
3.
Am Nat ; 200(5): 662-674, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36260844

RESUMEN

AbstractDuring range expansions, organisms can use epigenetic mechanisms to adjust to conditions in novel areas by altering gene expression and enabling phenotypic plasticity. Here, we predicted that the number of CpG sites within the genome, one form of epigenetic potential, would be important for successful range expansions because DNA methylation can modulate gene expression and, consequently, plasticity. We asked how the number of CpG sites and DNA methylation varied across five locations in the ∼70-year-old Kenyan house sparrow (Passer domesticus) range expansion. We found that the number of CpG sites was highest toward the vanguard of the invasion and decreased toward the range core. Analysis suggests that this pattern may have been driven by selection, favoring birds with more CpG sites at the range edge. However, we cannot rule out other processes, including nonrandom gene flow. Additionally, DNA methylation did not change across the range expansion, nor was it more variable. We hypothesize that as new areas are colonized, epigenetic potential may be selectively advantageous early but eventually be replaced by less plastic and perhaps genetically canalized traits as populations adapt to local conditions. Although further work is needed on epigenetic potential, this form (CpG number) appears to be a promising mechanism to investigate as a driver of expansions via capacitated phenotypic plasticity in other natural and anthropogenic range expansions.


Asunto(s)
Gorriones , Animales , Gorriones/genética , Metilación de ADN , Kenia , Epigénesis Genética , Plásticos
4.
Epigenomes ; 6(4)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36278679

RESUMEN

DNA methylation is an epigenetic modification with wide-ranging consequences across the life of an organism. This modification can be stable, persisting through development despite changing environmental conditions. However, in other contexts, DNA methylation can also be flexible, underlying organismal phenotypic plasticity. One underappreciated aspect of DNA methylation is that it is a potent mutagen; methylated cytosines mutate at a much faster rate than other genetic motifs. This mutagenic property of DNA methylation has been largely ignored in eco-evolutionary literature, despite its prevalence. Here, we explore how DNA methylation induced by environmental and other factors could promote mutation and lead to evolutionary change at a more rapid rate and in a more directed manner than through stochastic genetic mutations alone. We argue for future research on the evolutionary implications of DNA methylation driven mutations both within the lifetime of organisms, as well as across timescales.

5.
Horm Behav ; 135: 105038, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34280702

RESUMEN

The hypothalamic-pituitary-adrenal (HPA) axis and its end products, the glucocorticoids, are critical to responding appropriately to stressors. Subsequently, many studies have sought relationships between glucocorticoids and measures of health or fitness, but such relationships are at best highly context dependent. Recently, some endocrinologists have started to suggest that a focus on HPA flexibility, the ability of an individual to mount appropriate responses to different stressors, could be useful. Here, we tested the hypothesis that expression of FKBP5, a cochaperone in the glucocorticoid receptor complex, is a simple and reliable proxy of HPA flexibility in a wild songbird, the house sparrow (Passer domesticus). We quantified HPA flexibility in a novel way, using guidance from research on heart rhythm regulation. As predicted, we found that adult sparrows with low stress-induced FKBP5 expression in the hypothalamus exhibited high HPA flexibility. Moreover, low FKBP5 expression was associated with greater exploratory disposition and were better at maintaining body mass under stressful conditions. Altogether, these results suggest that FKBP5 may be important in the regulation of HPA flexibility, potentially affecting how individuals cope with natural and anthropogenic adversity.


Asunto(s)
Gorriones , Animales , Corticosterona , Femenino , Glucocorticoides , Humanos , Sistema Hipotálamo-Hipofisario , Masculino , Sistema Hipófiso-Suprarrenal
6.
J Exp Biol ; 224(Pt 6)2021 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-33775934

RESUMEN

Epigenetic mechanisms may play a central role in mediating phenotypic plasticity, especially during range expansions, when populations face a suite of novel environmental conditions. Individuals may differ in their epigenetic potential (EP; their capacity for epigenetic modifications of gene expression), which may affect their ability to colonize new areas. One form of EP, the number of CpG sites, is higher in introduced house sparrows (Passer domesticus) than in native birds in the promoter region of a microbial surveillance gene, Toll-like Receptor 4 (TLR4), which may allow invading birds to fine-tune their immune responses to unfamiliar parasites. Here, we compared TLR4 gene expression from whole blood, liver and spleen in house sparrows with different EP, first challenging some birds with lipopolysaccharide (LPS), to increase gene expression by simulating a natural infection. We expected that high EP would predict high inducibility and reversibility of TLR4 expression in the blood of birds treated with LPS, but we did not make directional predictions regarding organs, as we could not repeatedly sample these tissues. We found that EP was predictive of TLR4 expression in all tissues. Birds with high EP expressed more TLR4 in the blood than individuals with low EP, regardless of treatment with LPS. Only females with high EP exhibited reversibility in gene expression. Further, the effect of EP varied between sexes and among tissues. Together, these data support EP as one regulator of TLR4 expression.


Asunto(s)
Gorriones , Animales , Epigénesis Genética , Femenino , Expresión Génica , Humanos , Lipopolisacáridos/farmacología , Gorriones/genética , Bazo
7.
Trends Immunol ; 42(3): 198-208, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33518415

RESUMEN

For most of its history, immunology has sought to control environmental variation to establish genetic causality. As with all biological traits though, variation among individuals arises by three broad pathways: genetic (G), environmental (E), and the interactive between the two (GxE); and immunity is no different. Here, we review the value of applying the evolutionary frameworks of phenotypic plasticity and reaction norms to immunology. Because standardized laboratory environments are vastly different from the conditions under which populations evolved, we hypothesize that immunology might presently be missing important phenotypic variation and even focusing on dysregulated molecular and cellular processes. Modest adjustments to study designs could make model organism immunology more productive, reproducible, and reflective of human physiology.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Variación Genética , Humanos , Fenotipo
8.
Integr Comp Biol ; 60(6): 1454-1457, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33326579

RESUMEN

All organisms must respond to environmental stimuli, and most metazoans do so through endocrine system regulation. Hormonal fluctuations allow organisms to maintain and return to homeostasis following perturbations, making them vital for survival and fitness. Many components of the endocrine system (e.g., proteins, steroids, receptors, genome response elements, etc.) and the physiological and behavioral processes they regulate are conserved among vertebrates (e.g., the glucocorticoid stress response). However, there are sometimes dramatic differences among and within species, particularly in how hormonal variation affects phenotypes. Some such variation is driven by internal factors such as genetics, developmental stage, sex, individual age, and body condition in addition to external factors such as the type, magnitude, and duration of environmental stimuli. Eco-evolutionary endocrinology has been quite successful in describing this variation among and within species, but we have only just begun to understand how these factors interact to affect phenotypic diversity, ecological function, and evolution. Mounting evidence suggests that various molecular epigenetic modifications of genome structure and activity, such as deoxyribonucleic acid methylation, histone modifications, non-coding RNAs, and small RNAs, mediate the interactions between environmental conditions, individual traits, and the endocrine system. As some epigenetic modifications can be induced or removed by environmental stimuli, they represent promising candidates underlying endocrine regulation and variation, particularly epigenetic marks that can be stably inherited. This symposium discussed the role of epigenetic modifications in endocrine systems, mainly in natural populations.


Asunto(s)
Evolución Biológica , Condicionamiento Físico Animal , Animales , Sistema Endocrino , Epigénesis Genética , Glucocorticoides , Estadios del Ciclo de Vida
9.
Integr Comp Biol ; 60(6): 1458-1468, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32497186

RESUMEN

Epigenetic potential, defined as the capacity for epigenetically-mediated phenotypic plasticity, may play an important role during range expansions. During range expansions, populations may encounter relatively novel challenges while experiencing lower genetic diversity. Phenotypic plasticity via epigenetic potential might be selectively advantageous at the time of initial introduction or during spread into new areas, enabling introduced organisms to cope rapidly with novel challenges. Here, we asked whether one form of epigenetic potential (i.e., the abundance of CpG sites) in three microbial surveillance genes: Toll-like receptors (TLRs) 1B (TLR1B), 2A (TLR2A), and 4 (TLR4) varied between native and introduced house sparrows (Passer domesticus). Using an opportunistic approach based on samples collected from sparrow populations around the world, we found that introduced birds had more CpG sites in TLR2A and TLR4, but not TLR1B, than native ones. Introduced birds also lost more CpG sites in TLR1B, gained more CpG sites in TLR2A, and lost fewer CpG sites in TLR4 compared to native birds. These results were not driven by differences in genetic diversity or population genetic structure, and many CpG sites fell within predicted transcription factor binding sites (TFBS), with losses and gains of CpG sites altering predicted TFBS. Although we lacked statistical power to conduct the most rigorous possible analyses, these results suggest that epigenetic potential may play a role in house sparrow range expansions, but additional work will be critical to elucidating how epigenetic potential affects gene expression and hence phenotypic plasticity at the individual, population, and species levels.


Asunto(s)
Gorriones , Animales , Epigénesis Genética , Epigenómica , Expresión Génica , Gorriones/genética
10.
Elife ; 92020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32343224

RESUMEN

From the northernmost tip of Scandinavia to the southernmost corner of Patagonia, and across six continents, house sparrows (Passer domesticus) inhabit most human-modified habitats of the globe. With over 7,000 articles published, the species has become a workhorse for not only the study of self-urbanized wildlife, but also for understanding life history and body size evolution, sexual selection and many other biological phenomena. Traditionally, house sparrows were studied for their adaptations to local biotic and climatic conditions, but more recently, the species has come to serve as a focus for studies seeking to reveal the genomic, epigenetic and physiological underpinnings of success among invasive vertebrate species. Here, we review the natural history of house sparrows, highlight what the study of these birds has meant to bioscience generally, and describe the many resources available for future work on this species.


Asunto(s)
Adaptación Fisiológica/fisiología , Conducta Animal/fisiología , Gorriones/fisiología , Animales , Animales Salvajes/genética , Biología/métodos , Aves , Ecosistema , Genoma , Gorriones/genética
11.
Integr Comp Biol ; 57(2): 385-395, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28859411

RESUMEN

SYNOPSIS: During range expansions, organisms are often exposed to multiple pressures, including novel enemies (i.e., predators, competitors and/or parasites) and unfamiliar or limited resources. Additionally, small propagule sizes at range edges can result in genetic founder effects and bottlenecks, which can affect phenotypic diversity and thus selection. Despite these obstacles, individuals in expanding populations often thrive at the periphery of a range, and this success may be mediated by phenotypic plasticity. Increasing evidence suggests that epigenetic mechanisms may underlie such plasticity because they allow for more rapid phenotypic responses to novel environments than are possible via the accumulation of genetic variation. Here, we review how molecular epigenetic mechanisms could facilitate plasticity in range-expanding organisms, emphasizing the roles of DNA methylation and other epigenetic marks in the physiological regulatory networks that drive whole-organism performance. We focus on the hypothalamic-pituitary-adrenal (HPA) axis, arguing that epigenetically-mediated plasticity in the regulation of glucocorticoids in particular might strongly impact range expansions. We hypothesize that novel environments release and/or select for epigenetic potential in HPA variation and hence organismal performance and ultimately fitness.


Asunto(s)
Distribución Animal/fisiología , Epigénesis Genética , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Vertebrados/fisiología , Animales , Metilación de ADN , Ambiente , Variación Genética , Fenotipo , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA