Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 281: 116660, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944012

RESUMEN

Environmental accumulation of nano- and microplastics pose serious risks to human health. Polystyrene (PS) is a polymer commonly used in the production of plastics. However, PS can adsorb cadmium (Cd), thereby influencing bioavailability and toxicity in vivo. Moreover, PS and Cd can accumulate in the mammalian kidney. Therefore, the aim of the present study was to assess the effects of combined exposure to PS and Cd in the kidney. Kidney damage was evaluated in male mice gavaged with PS (diameter, 100 nm and/or 1 µm) and Cd for 25 days.The results showed that PS at 100 nm caused more severe oxidative damage and cell apoptosis than PS at 1 µm. Combined exposure to PS at both 100 nm and 1 µm caused more severe kidney damage than the single administration groups. The extent of kidney toxicity caused by Cd differed with the combination of PS particles at 100 nm vs. 1 µm. The degree of damage to kidney function, pathological changes, and cell apoptosis induced by Cd+100 nm PS+1µm PS was the most severe. An increase in the Bax/Bcl2 ratio and overexpression of p53 and caspase-3 revealed that renal cell apoptosis might be induced via the mitochondrial pathway. Collectively, these findings demonstrate that the size of PS particles dictates the combined effects of PS and Cd in kidney tissues. Kidney damage caused by the combination of different sizes of PS particle and Cd is more complicated under actual environmental conditions.

2.
Org Lett ; 26(24): 5196-5201, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38858221

RESUMEN

A novel strategy for incorporating a trifluoroacetyl functionality into a range of structurally varied unsaturated bonds was developed by using PhI(OCOMe)2 as an oxidant with a masked trifluoroacyl reagent as a trifluoroacetyl radical precursor. The oxidative decarboxylation of the masked trifluoroacyl precursor followed by a tandem radical process provides versatile access to 5-exo-trig cyclization of N-arylacrylamides, direct C(sp2)-H trifluoroacetylation of quinolines, isoquinoline, 2H-indazole, and quinoxalin-2(1H)-ones, and C(sp)-H trifluoroacetylation of alkynes. This protocol is characterized by mild reaction conditions, operational simplicity, and broad functional group compatibility.

3.
Clin Cancer Res ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836759

RESUMEN

PURPOSE: Patients with glioblastoma (GBM) have a dismal prognosis. While DNA alkylating agent temozolomide (TMZ) is mainstay of chemotherapy, therapeutic resistance develops rapidly in patients. Base excision repair inhibitor TRC102 (methoxyamine) reverses TMZ resistance in preclinical glioma models. We sought to investigate efficacy and safety of oral TRC102+TMZ for recurrent GBM (rGBM). PATIENTS AND METHODS: A pre-registered (NCT02395692), non-randomized, multicenter, phase 2 clinical trial (BERT) was planned and conducted through the Adult Brain Tumor Consortium (ABTC-1402). Arm 1 included bevacizumab-naïve GBM patients at first recurrence, with primary endpoint of response rates. If sufficient activity was identified, a second arm was planned in bevacizumab-refractory patients. Secondary endpoints were overall survival (OS), progression-free survival (PFS), PFS at six months (PFS-6), and toxicity. RESULTS: Arm 1 enrolled 19 patients with median of two treatment cycles. Objective responses were not observed, hence, arm 2 did not open. Median OS was 11.1 months (95%CI 8.2-17.9). Median PFS was 1.9 months (95%CI 1.8-3.7). PFS-6 was 10.5% (95%CI 1.3-33.1%). Most toxicities were Grade 1-2, with two Grade 3 lymphopenias and one Grade 4 thrombocytopenia. Two patients with PFS ≥17 months and OS >32 months were deemed 'extended survivors'. RNA sequencing of tumor tissue, obtained at diagnosis, demonstrated significantly enriched signatures of DNA damage response (DDR), chromosomal instability (CIN70, CIN25), and cellular proliferation (PCNA25) in 'extended survivors'. CONCLUSIONS: These findings confirm safety and feasibility of TRC102+TMZ for rGBM patients. They also warrant further evaluation of combination therapy in biomarker-enriched trials enrolling GBM patients with baseline hyperactivated DDR pathways.

4.
Appl Opt ; 63(16): 4414-4420, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856622

RESUMEN

Gallium oxide (G a 2 O 3) photodetectors have drawn increased interest for their widespread applications ranging from military to civil. Due to the inherent oxygen vacancy defects, they seriously suffer from trade-offs that make them incompetent for high-responsivity, quick-response detection. Herein, a G a 2 O 3 nanocavity photodetector assisted with grating electrodes is designed to break the constraint. The proposed structure supports both the plasmonic mode and the Fabry-Perot (F-P) mode. Numerical calculations show that the absorption of 99.8% is realized for ultra-thin G a 2 O 3 (30 nm), corresponding to a responsivity of 12.35 A/W. Benefiting from optical mechanisms, the external quantum efficiency (EQE) reaches 6040%, which is 466 times higher than that of bare G a 2 O 3 film. Furthermore, the proposed photodetector achieves a polarization-dependent dichroism ratio of 9.1, enabling polarization photodetection. The grating electrodes also effectively reduce the transit time of the photo-generated carriers. Our work provides a sophisticated platform for developing high-performance G a 2 O 3 photodetectors with the advantages of simplified fabrication processes and multidimensional detection.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38912568

RESUMEN

INTRODUCTION: Diabetic cataract (DC) is a common ocular complication of diabetes. Mitofusin 2 (MFN2), a mitochondrial fusion protein, is involved in the pathogenesis of cataract and diabetic complications. However, its role and molecular mechanisms in DC remain unclear. MATERIALS AND METHODS: DC models in rats were induced by intraperitoneal injection of streptozocin (STZ) for 12 weeks. We measured the body weight of rats, blood glucose concentrations, sorbitol dehydrogenase (SDH) activity and advanced glycation end products (AGE) content in the lenses of rats. MFN2 mRNA and protein expression levels in the lenses were detected by RT-qPCR and western blot assays. In vitro, human lens epithelial (HLE) B3 cells were treated for 48 h with 25 mM glucose (high glucose, HG) to induce cell damage. To determine the role of MFN2 in HG-induced cell damage, HLE-B3 cells were transfected with lentivirus loaded with MFN2 overexpression plasmid or short hairpin RNA (shRNA) to overexpress or knock down MFN2 expression, followed by HG exposure. Cell viability was assessed by CCK-8 assay. Flow cytometry was used to detect cell apoptosis and reactive oxygen species (ROS) level. JC-1 staining showed the changes in mitochondrial membrane potential (Δψm). The mediators related to apoptosis, mitochondrial damage, and autophagy were determined. RESULTS: STZ-administrated rats showed reduced body weight, increased blood glucose levels, elevated SDH activity and AGE content, suggesting successful establishment of the DC rat model. Interestingly, MFN2 expression was significantly downregulated in DC rat lens and HG-induced HLE-B3 cells. Further analysis showed that under HG conditions, MFN2 overexpression enhanced cell viability and inhibited apoptosis accompanied by decreased Bax, cleaved caspase-9 and increased Bcl-2 expression in HLE-B3 cells. MFN2 overexpression also suppressed the mitochondrial damage elicited by HG as manifested by reduced ROS production, recovered Δψm and increased mitochondrial cytochrome c (Cyto c) level. Moreover, MFN2 overexpression increased LC3BⅡ/LC3BⅠ ratio and Beclin-1 expression, but decreased p62 level, and blocked the phosphorylation of mTOR in HG-treated HLE-B3 cells. In contrast, MFN2 silencing exerted opposite effects. CONCLUSIONS: Our findings indicate that MFN2 expression may be essential for preventing lens epithelial cell apoptosis during development of diabetic cataract.

6.
Plant Sci ; 346: 112162, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901780

RESUMEN

CrRLK1L subfamily members are involved in diverse growth- and development-related processes in Arabidopsis. However, the functions of their counterparts in rice are unknown. Here, OsANX expression was detected in developing inflorescences, mature pollen grains, and growing pollen tubes, and it was localized to the plasma membrane in pollen grains and tobacco epidermal cells. Homozygous osanx progeny could not be segregated from the CRISPR/Cas9-edited mutants osanx-c1+/- and osanx-c2+/-, and such progeny were segregated only occasionally from osanx-c3+/-. Further, all three alleles showed osanx male but not female gamete transmission defects, in line with premature pollen tube rupture in osanx-c3. Additionally, osanx-c3 exhibited precocious flowering, excessively branched inflorescences, and an extremely low seed setting rate of 1.4 %, while osanx-c2+/- and osanx-c3+/- had no obvious defects in inflorescence development or the seed setting rate compared to wild-type Nipponbare (Nip). Consistent with this, the complemented line pPS1:OsANX-GFP/osanx-c2 (PSC), in which the lack of OsANX expression was inflorescence-specific, showed slightly earlier flowering and overly-branched panicles. Multiple inflorescence meristem transition-related and inflorescence architecture-related genes were expressed at higher levels in osanx-c3 than in Nip; thus, they may partially account for the aforementioned mutant phenotypes. Our findings broaden our understanding of the biological functions of OsANX in rice.

7.
Nanotechnology ; 35(37)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38861971

RESUMEN

HfO2-based ferroelectric materials as the most promising candidate for the ferroelectric memories, have been widely studied for more than a decade due to their excellent ferroelectric properties and CMOS compatibility. In order to realize its industrialization as soon as possible, researchers have been devoted to improving the reliability performance, such as wake up, imprint, limited endurance, et al. Among them, the breakdown characteristic is one of main failure mechanisms of HfO2-based ferroelectric devices, which limits the write/read reliability of the devices. Based on this, we systematically studied the effect of thickness on the time-dependent dielectric breakdown (TDDB) tolerate capability of HfO2-ZrO2(HZO) FE films under both forward and reverse electrical stress conditions. The thickness of HZO FE film ranged from 6 to 20 nm. Our findings reveal that decreasing the thickness of the HZO FE film leads to an improvement in TDDB tolerance capability which is attributed to the fact that higher density of oxygen vacancies in thinner HZO FE films can effectively inhibit the generation of new oxygen vacancies and the growth of conductive filaments, thus effectively improving the TDDB characteristics. These results provide a potential solution for mitigating breakdown characteristics of HfO2-based ferroelectric devices in memory applications.

8.
Nat Commun ; 15(1): 5047, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871750

RESUMEN

Direct solar-to-hydrogen conversion from pure water using all-organic heterogeneous catalysts remains elusive. The challenges are twofold: (i) full-band low-frequent photons in the solar spectrum cannot be harnessed into a unified S1 excited state for water-splitting based on the common Kasha-allowed S0 → S1 excitation; (ii) the H+ → H2 evolution suffers the high overpotential on pristine organic surfaces. Here, we report an organic molecular crystal nanobelt through the self-assembly of spin-one open-shell perylene diimide diradical anions (:PDI2-) and their tautomeric spin-zero closed-shell quinoid isomers (PDI2-). The self-assembled :PDI2-/PDI2- crystal nanobelt alters the spin-dependent excitation evolution, leading to spin-allowed S0S1 → 1(TT) → T1 + T1 singlet fission under visible-light (420 nm~700 nm) and a spin-forbidden S0 → T1 transition under near-infrared (700 nm~1100 nm) within spin-hybrid chromophores. With a triplet-triplet annihilation upconversion, a newly formed S1 excited state on the diradical-quinoid hybrid induces the H+ reduction through a favorable hydrophilic diradical-mediated electron transfer, which enables simultaneous H2 and O2 production from pure water with an average apparent quantum yield over 1.5% under the visible to near-infrared solar spectrum.

9.
Opt Express ; 32(10): 17452-17463, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858928

RESUMEN

Hardware implementation of reservoir computing (RC), which could reduce the power consumption of machine learning and significantly enhance data processing speed, holds the potential to develop the next generation of machine learning hardware devices and chips. Due to the existing solution only implementing reservoir layers, the information processing speed of photonics RC system are limited. In this paper, a photonic implementation of a VMM-RC system based on single Vertical Cavity Surface Emitting Laser (VCSEL) with two Mach Zehnder modulators (MZMs) has been proposed. Unlike previous work, both the input and reservoir layers are realized in the optical domain. Additionally, the impact of various mask signals, such as Two-level mask, Six-level mask, and chaos mask signal, employed in system, has been investigated. The system's performance improves with the use of more complex mask(t). The minimum Normalized mean square error (NMSE) can reach 0.0020 (0.0456) for Santa-Fe chaotic time series prediction in simulation (experiment), while the minimum Word Error Rate (WER) can 0.0677 for handwritten digits recognition numerically. The VMM-RC proposed is instrumental in advancing the development of photonic RC by overcoming the long-standing limitations of photonic RC systems in reservoir implementation. Linear matrix computing units (the input layer) and nonlinear computing units (the reservoir layer) are simultaneously implemented in the optical domain, significantly enhancing the information processing speed of photonic RC systems.

10.
J Perianesth Nurs ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38935010

RESUMEN

PURPOSE: Thirst is a symptom of dehydration and one of the main complications affecting postoperative outcomes and comfort. Persistent water scarcity can have a detrimental effect on the cognitive function and psychology of patients. However, the current evidence about the prevalence and risk factors for postoperative thirst is not fully understood. Therefore, this study aims to investigate the prevalence and risk factors of postoperative thirst and provide guidance for clinical practice. DESIGN: Systematic review and meta-analysis. METHODS: We searched PubMed, Cochrane Library, Web of Science, Embase, Clinicaltrials.gov, China National Knowledge Infrastructure, and Wanfang Database. Eligible studies were evaluated using the Agency for Healthcare Research and Quality. The collected data were pooled and analyzed using Stata15.0. FINDINGS: A total of 11 cross-sectional studies were included involving 20,612 patients. Eight studies reported prevalence and the pooled prevalence of postoperative thirst was 76.8% (95% confidence interval [CI]: 0.664 to 0.858). Five studies contributed to meta-syntheses of risk factors for postoperative thirst. The results indicated that sex (odds ratio [OR] = 1.44, 95% CI = 1.13 to 1.84, I2 = 80.2%, P = .006), anesthesia drug (OR = 1.48, 95% CI = 1.06 to 2.06, I2 = 94.8%, P < .001), surgical type (OR = 0.66, 95% CI = 0.49 to 0.9, I2 = 77.9%, P = .004) were statistically associated with postoperative thirst. CONCLUSIONS: Our study shows a high prevalence of postoperative thirst. Sex, anesthesia drug, and surgical type are risk factors that influence postoperative thirst. Nurses and other health care professionals should routinely assess the postoperative thirst of patients and perform targeted interventions to alleviate their distressing symptoms and improve the quality of care.

11.
Sensors (Basel) ; 24(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38931681

RESUMEN

The precision of short-term photovoltaic power forecasts is of utmost importance for the planning and operation of the electrical grid system. To enhance the precision of short-term output power prediction in photovoltaic systems, this paper proposes a method integrating K-means clustering: an improved snake optimization algorithm with a convolutional neural network-bidirectional long short-term memory network to predict short-term photovoltaic power. Firstly, K-means clustering is utilized to categorize weather scenarios into three categories: sunny, cloudy, and rainy. The Pearson correlation coefficient method is then utilized to determine the inputs of the model. Secondly, the snake optimization algorithm is improved by introducing Tent chaotic mapping, lens imaging backward learning, and an optimal individual adaptive perturbation strategy to enhance its optimization ability. Then, the multi-strategy improved snake optimization algorithm is employed to optimize the parameters of the convolutional neural network-bidirectional long short-term memory network model, thereby augmenting the predictive precision of the model. Finally, the model established in this paper is utilized to forecast photovoltaic power in diverse weather scenarios. The simulation findings indicate that the regression coefficients of this method can reach 0.99216, 0.95772, and 0.93163 on sunny, cloudy, and rainy days, which has better prediction precision and adaptability under various weather conditions.

12.
Health Care Sci ; 3(2): 101-113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38939613

RESUMEN

Background: Although socioeconomic support is recommended for frailty management, its association with the prognosis of frailty is unclear. Methods: Using data from participants aged ≥65 years in the Chinese Longitudinal Healthy Longevity Survey (2008-2018), the associations between socioeconomic support (source of income, medical insurance, community support, living status), onset of prefrailty/frailty, and worsening of prefrailty, were analyzed using multinominal logistic regression models. The associations between self-reported low quality of life (QoL) and reversion of prefrailty/frailty were analyzed using multivariate logistic regression models. Associations with mortality risk were analyzed using Cox proportional hazard regression models. Results: A total of 13,859 participants (mean age: 85.8 ± 11.1 years) containing 2056 centenarians were included. Financial dependence was a risk factor for low QoL among prefrail/frail individuals, but not among robust individuals. Having commercial or other insurance, and receiving social support from the community were protective factors for low QoL among prefrail/frail individuals and for the worsening of prefrailty. Continuing to work was a risk factor for low QoL, but a protective factor for worsening of prefrailty. A negative association between continuing to work and mortality existed in prefrail individuals aged <85 years and ≥85 years. Living alone was a risk factor for low QoL, but was not significantly associated with frailty prognosis. Conclusions: Prefrail and frail individuals were vulnerable to changes in socioeconomic support and more sensitive to it compared with robust individuals. Preferential policies regarding financial support, social support, and medical insurance should be developed for individuals with frailty.

13.
Ther Adv Med Oncol ; 16: 17588359241248352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736555

RESUMEN

Background: While targeted therapy has become the standard treatment for certain non-small-cell lung cancer (NSCLC) patients with gene mutation positivity, there remains a lack of enough reports of the efficacy of mesenchymal-epithelial transition (MET) alterations in the real world. Objectives: We aimed to explore the efficacy and toxicity of targeted therapy in NSCLC patients with different types of MET alterations and hope to provide more clinical medication guidance. Design: Designed different subgroups to compare the efficacy and safety of targeted therapy in NSCLC patients with MET alterations. Methods: We conducted analyses on the efficacy and safety of mesenchymal-epithelial transition factor-tyrosine kinase inhibitor (MET-TKI) therapy in NSCLC patients with MET alterations. Tumor response was evaluated based on the Response Evaluation Criteria in Solid Tumors version 1.1 criteria, and both progression-free survival (PFS) and overall survival were determined using the Kaplan-Meier method. Results: Our study encompassed 116 NSCLC patients with MET alterations, including MET ex14 skipping mutation (n = 50), MET primary amplification (amp) (n = 25), and secondary amp (n = 41). Among treated patients, 34 achieved a partial response, while 52 exhibited stable disease. The overall response rate for the entire cohort was 29.31%, with a disease control rate of 74.14%. A significant difference was observed in the median PFS among patients with MET ex14 skipping mutation, MET primary amplification (amp), and secondary amp (10.4 versus 6.6 versus 4.5 months, p = 0.002). In all, 69 patients experienced drug-related adverse effects, with the most common being peripheral edema (35.34%), nausea and vomiting (21.55%), and fatigue (10.34%). In total, 29 patients (25%) encountered drug-related adverse reactions of grade 3 or higher. Conclusion: MET-TKI therapy works better for MET ex14 skipping mutation than other types of MET gene alteration. In the two MET amplified groups, the secondary amp was less effective. This study may provide more research support for the treatment of these patients.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38752995

RESUMEN

A novel actinobacterium, strain ZYX-F-186T, was isolated from marine sediment sampled on Yongxing Island, Hainan Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain ZYX-F-186T belongs to the genus Phytohabitans, with high similarity to Phytohabitans kaempferiae KK1-3T (98.3 %), Phytohabitans rumicis K11-0047T (98.1 %), Phytohabitans flavus K09-0627T (98.1 %), Phytohabitans houttuyneae K11-0057T (97.9 %), Phytohabitans suffuscus K07-0523T (97.7 %), and Phytohabitans aurantiacus RD004123T (97.7 %). Phylogenetic analysis of 16S rRNA gene sequences showed that the strain formed a single subclade in the genus Phytohabitans. The novel isolate contained meso-diaminopimelic acid, d-glutamic acid, glycine, d-alanine, and l-lysine in the cell wall. The whole-cell sugars were xylose, arabinose, ribose, and rhamnose. The predominant menaquinones were MK-9(H8), MK-9(H6), and MK-9(H4). The characteristic phospholipids were phosphatidylethanolamine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylglycerol, and an unknown phospholipid. The major fatty acids (>5 %) were iso-C16 : 0, anteiso-C17 : 0, and iso-C18 : 0. Genome sequencing showed a DNA G+C content of 71.9 mol%. Low average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values demonstrated that strain ZYX-F-186T could be readily distinguished from its closely related species. Based on its phylogenetic, chemotaxonomic, and physiological characteristics, strain ZYX-F-186T represents a novel species of the genus Phytohabitans, for which the name Phytohabitans maris sp. nov. is proposed. The type strain is ZYX-F-186T (=CGMCC 4.8025T=CCTCC AA 2023025T=JCM 36507T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , China , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Vitamina K 2/química , Hibridación de Ácido Nucleico , Pared Celular/química
15.
ACS Appl Mater Interfaces ; 16(19): 25445-25461, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703131

RESUMEN

Naturally occurring coatings on aluminum metal, such as its oxide or hydroxide, serve to protect the material from corrosion. Understanding the conditions under which these coatings mechanically fail is therefore expected to be an important aspect of predictive models for aluminum component lifetimes. To this end, we develop and apply a molecular dynamics (MD) modeling framework for conducting tension tests that is capable of isolating factors governing the mechanical strength as a function of coating chemistry, defect morphology, and variables associated with the loading path. We consider two representative materials, including γ-Al2O3 and γ-Al(OH)3 (i.e., oxide and hydroxide), both of which form readily as aluminum surface coatings. Our results indicate that defects have a significant bearing on the strength of aluminum oxide, with grain boundaries serving to reduce the strain at failure from εzz = 0.300 to 0.219, relative to perfect single crystal. Our simulations also predict that porosity lowers the elastic stiffness and yield strength of the oxide. Relative to perfect crystal, we find porosity factors of 5%, 10% and 20% decrease the yield stress by 26%, 36% and 53%, respectively. MD predicts that perfect hydroxide and oxide single crystal have respective strains at failure of 0.08 and 0.31 under tensile uniaxial strain loading, and that the corresponding yield stresses are respectively 1.6 and 11.1 GPa. These data indicate that the hydroxide is substantially more susceptible to mechanical failure than the oxide. Our results, coupled with literature findings that indicate hot and humid conditions favor formation of hydroxide and defective oxide coatings, indicate the potential for a complicated dependence of aluminum corrosion susceptibility and stress corrosion cracking on aging history.

16.
Ther Adv Med Oncol ; 16: 17588359241253127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812990

RESUMEN

Background: Although immune checkpoint inhibitor treatment for advanced thymic carcinoma exhibits promising efficacy, factors that affect the efficacy and prognosis, including metastases sites, remain uncertain. Objectives: Our study aimed to investigate the determinants of survival among patients with advanced thymic carcinoma who underwent immunotherapy in real-world settings, with implications for clinical practice. Designs: Different therapy regimens of immunotherapy were produced to analyze the influence of liver metastases on survival and prognosis for advanced thymic carcinoma patients. Methods: Data for advanced thymic carcinoma patients receiving immunotherapy and their metastases sites were collected for analysis from seven different hospitals between January 2015 and January 2023. Progression-free survival (PFS) and overall survival (OS) analyses were performed using the Kaplan-Meier method. Cox analysis was used to evaluate factors influencing survival. Results: The present study analyzed 136 advanced thymic carcinoma patients from seven different hospitals.The PFS for all patients receiving immunotherapy was 6.4 months, while the OS was 24.0 months. The objective response rate was different for patients with liver and non-liver metastases (11.9% versus 37.2%, p = 0.003). The disease control rate values were also different between the two groups (47.6% versus 80.9%, p = 0.037). The PFS for patients with liver metastases demonstrated poor immunotherapy efficacy compared to patients with non-liver metastases (3.0 versus 8.0 months, p < 0.0001). The OS was also significantly different between these two patient groups (16.1 versus 29.1 months, p = 0.009). Conclusion: Immunotherapy had poor efficacy in advanced thymic carcinoma patients with liver metastases.

17.
Clin Respir J ; 18(5): e13751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725315

RESUMEN

BACKGROUND: Some solitary pulmonary nodules (SPNs) as early manifestations of lung cancer, it is difficult to determine its nature, which brings great trouble to clinical diagnosis and treatment. Radiomics can deeply explore the essence of images and provide clinical decision support for clinicians. The purpose of our study was to explore the effect of positron emission tomography (PET) with 2-deoxy-2-[fluorine-18] fluoro-d-glucose integrated with computed tomography (CT; 18F-FDG-PET/CT) combined with radiomics for predicting probability of malignancy of SPNs. METHODS: We retrospectively enrolled 190 patients with SPNs confirmed by pathology from January 2013 to December 2019 in our hospital. SPNs were benign in 69 patients and malignant in 121 patients. Patients were randomly divided into a training or testing group at a ratio of 7:3. Three-dimensional regions of interest (ROIs) were manually outlined on PET and CT images, and radiomics features were extracted. Synthetic minority oversampling technique (SMOTE) method was used to balance benign and malignant samples to a ratio of 1:1. In the training group, least absolute shrinkage and selection operator (LASSO) regression analyses and Spearman correlation analyses were used to select the strongest radiomics features. Three models including PET model, CT model, and joint model were constructed using multivariate logistic regression analysis. Receiver operating characteristic (ROC) curves, calibration curves, and decision curves were plotted to evaluate diagnostic efficiency, calibration degree, and clinical usefulness of all models in training and testing groups. RESULTS: The estimative effectiveness of the joint model was superior to the CT or PET model alone in the training and testing groups. For the joint model, CT model, and PET model, area under the ROC curve was 0.929, 0.819, 0.833 in the training group, and 0.844, 0.759, 0.748 in the testing group, respectively. Calibration and decision curves showed good fit and clinical usefulness for the joint model in both training and testing groups. CONCLUSION: Radiomics models constructed by combining PET and CT radiomics features are valuable for distinguishing benign and malignant SPNs. The combined effect is superior to qualitative diagnoses with CT or PET radiomics models alone.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias Pulmonares , Tomografía Computarizada por Tomografía de Emisión de Positrones , Nódulo Pulmonar Solitario , Humanos , Nódulo Pulmonar Solitario/diagnóstico por imagen , Nódulo Pulmonar Solitario/patología , Masculino , Femenino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Estudios Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Anciano , Radiofármacos , Adulto , Radiómica
18.
Nanomaterials (Basel) ; 14(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38786823

RESUMEN

Electro-optic modulators (EOMs) are pivotal in bridging electrical and optical domains, essential for diverse applications including optical communication, microwave signal processing, sensing, and quantum technologies. However, achieving the trifecta of high-density integration, cost-effectiveness, and superior performance remains challenging within established integrated photonics platforms. Enter thin-film lithium niobate (LN), a recent standout with its inherent electro-optic (EO) efficiency, proven industrial performance, durability, and rapid fabrication advancements. This platform inherits material advantages from traditional bulk LN devices while offering a reduced footprint, wider bandwidths, and lower power requirements. Despite its recent introduction, commercial thin-film LN wafers already rival or surpass established alternatives like silicon and indium phosphide, benefitting from decades of research. In this review, we delve into the foundational principles and technical innovations driving state-of-the-art LN modulator demonstrations, exploring various methodologies, their strengths, and challenges. Furthermore, we outline pathways for further enhancing LN modulators and anticipate exciting prospects for larger-scale LN EO circuits beyond singular components. By elucidating the current landscape and future directions, we highlight the transformative potential of thin-film LN technology in advancing electro-optic modulation and integrated photonics.

19.
Clin Transl Oncol ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795256

RESUMEN

BACKGROUND: The efficacy of afatinib or pyrotinib has been demonstrated in HER2-positive advanced non-small cell lung cancer (NSCLC) patients; however, the efficacy of pyrotinib after afatinib progression has yet to be determined. METHOD: Patients with HER2 mutated advanced lung adenocarcinoma administered afatinib or pyrotinib monotherapy were enrolled. Those who received pyrotinib after afatinib were further analyzed to determine the efficacy and safety of pyrotinib after progression on afatinib. Survival curves were plotted with the Kaplan-Meier method. A swimming plot was used to describe the specific treatments. Additionally, patient-derived tumor organoids (PDTOs) were established from HER2-amplified NSCLC patient samples to investigate the antitumor activity of pyrotinib in HER2-amplified tumor cells in vitro. RESULTS: A total of 99 patients were enrolled, 13 of whom were administered pyrotinib after progression on afatinib. No statistical difference in PFS of pyrotinib was observed between patients whether be treated after afatinib progression or not (6.7 months vs. 4.4 months, P = 0.817), thus indicating that progression on afatinib did not affect the efficacy of pyrotinib. Further analysis was conducted on the former patients, which comprising eight patients administered interval chemotherapy after progression on afatinib. Two patients achieved PR after pyrotinib treatment. No independent factors were found to influence the PFS of pyrotinib. PDTOs confirmed the anti-tumor activity of pyrotinib in NSCLC tumor cells with HER2 amplification. CONCLUSIONS: Progression after prior afatinib treatment does not influence the efficacy of pyrotinib treatment. Pyrotinib may be a salvage option for patients with HER2 mutation who have experienced progression on afatinib.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA