Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 12: 643492, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959011

RESUMEN

Background: An advanced stage, centrally localized invasive tumor is a major cause of sudden death in lung cancer patients. Currently, chemotherapy, radiotherapy, laser ablation, or surgical resection if possible are the available state-of-the-art treatments but none of these guarantee remedy or long-term relief and are often associated with fatal complications. Allowing localized chemotherapy, by direct and confined drug delivery only at the tumor site, could be a promising option for preoperative down staging or palliative therapy. Here we report the localized and targeted application of intra tumor delivery of chemotherapeutics using a novel device based on the principle of electrospray. Methods: C57BL/6J mice were injected with Lewis lung carcinoma cells subcutaneously. After 15 days, the animals were anesthetized and the tumors were exposed by skin incision. Tumors were electrosprayed with 100 µg cisplatin on days 0 and 2, and tumor volumes were measured daily. Animals were sacrificed on day 7 after the first electrospray and tumors were analyzed by immunohistochemistry. Results: In this proof-of-concept study, we report that the tumor volume was reduced by 81.2% (22.46 ± 12.14 mm3) after two electrospray mediated Cisplatin deliveries, while the control tumor growth, at the same time point, increased by 200% (514.30 ± 104.50 mm3). Moreover, tunnel and Caspase-3 positive cells were increased after Cisplatin electrospray compared to other experimental groups of animals. Conclusion: Targeted drug delivery by electrospray is efficient in the subcutaneous mouse model of lung cancer and offers a promising opportunity for further development toward its clinical application.

2.
J Am Soc Mass Spectrom ; 28(12): 2677-2685, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28932996

RESUMEN

Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/w or d/z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. Graphical Abstract.


Asunto(s)
Cationes/química , Citosina/química , ADN/química , Electrones , Secuencia de Bases , Transporte de Electrón , Radicales Libres/química , Espectrometría de Masas , Modelos Moleculares , Conformación de Ácido Nucleico , Oligonucleótidos/química , Protones
3.
J Am Soc Mass Spectrom ; 28(9): 1901-1909, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28500584

RESUMEN

Bent metallocenes Cp2MCl2 (M = Ti, V, Nb, Mo) are known to exhibit cytotoxic activity against a variety of cancer types. Though the mechanism of action is not fully understood yet, the accumulation of the metal ions in the nucleus points towards DNA as one of the primary targets. A set of eight deoxydinucleoside monophosphates was used to study the adduct yields with metallocenes and cisplatin. The binding affinities are reflected by the relative intensities of the adducts and were found to follow the order of Pt > V > Ti > Mo (no adducts were detected with Nb). High-resolution tandem mass spectrometry was applied to locate the binding patterns in the deoxydinucleoside monophosphates. Whereas cisplatin binds to the soft nitrogen atoms in the purine nucleobases, the metallocenes additionally interact with the hard phosphate oxygen, which is in good agreement with the hard and soft (Lewis) acids and bases (HSAB) concept. However, the binding specificities were found to be unique for each metallocene. The hard Lewis acids titanium and vanadium predominantly bind to the deprotonated phosphate oxygen, whereas molybdenum, an intermediate Lewis acid, preferentially interacts with the nucleobases. Nucleobases comprise alternative binding sites for titanium and vanadium, presumably oxygen atoms for the first and nitrogen atoms for the latter. In summary, the intrinsic binding behavior of the different metallodrugs is reflected by the gas-phase dissociation of the adducts. Consequently, MS/MS can provide insights into therapeutically relevant interactions between metallodrugs and their cellular targets. Graphical Abstract ᅟ.


Asunto(s)
Antineoplásicos/química , Fosfatos de Dinucleósidos/química , Metalocenos/química , Antineoplásicos/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Ácidos de Lewis/química , Ácidos de Lewis/metabolismo , Metalocenos/metabolismo , Espectrometría de Masas en Tándem
4.
Chimia (Aarau) ; 71(3): 120-123, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28351457

RESUMEN

The search for effective drugs against cisplatin-resistant tumors resulted in a large number of organometallic compounds that are evaluated for their antiproliferative activity. Among the most promising candidates are bent metallocenes based on various transition metal ions and ligands. The elucidation of structural features and the characterization of the interaction of a drug candidate with its target require accurate and sensitive analytical tools. Tandem mass spectrometry is applied to the investigation of the adduct sites and binding patterns of metallodrugs bound to single-stranded oligonucleotides and higher-order nucleic acids. Results reveal the binding specificities of the different metallodrugs and demonstrate the influence they exert on the dissociation pathways of the adducts in the gas-phase.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Ácidos Nucleicos/química , Compuestos Organometálicos/química , Espectrometría de Masas en Tándem/métodos , Antineoplásicos/análisis , Cisplatino/química , Aductos de ADN/química , Humanos , Metalocenos/química , Terapia Molecular Dirigida , Oligonucleótidos/química , Compuestos Organometálicos/análisis , Compuestos Organometálicos/farmacología , Programas Informáticos , Elementos de Transición
5.
J Am Soc Mass Spectrom ; 27(7): 1186-96, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27080005

RESUMEN

Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes. Graphical Abstract ᅟ.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Entropía , Cinética , ARN , Termodinámica
6.
Chimia (Aarau) ; 68(3): 164-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24801849

RESUMEN

In continuation of the long tradition of mass spectrometric research at the University of Bern, our group focuses on the characterization of nucleic acids as therapeutic agents and as drug targets. This article provides a short overview of our recent work on platinated single-stranded and higher-order nucleic acids. Nearly three decades ago the development of soft ionization techniques opened a whole new chapter in the mass spectrometric analysis of not only nucleic acids themselves, but also their interactions with potential drug candidates. In contrast to modern next generation sequencing approaches, though, the goal of the tandem mass spectrometric investigation of nucleic acids is by no means the complete sequencing of genetic DNA, but rather the characterization of short therapeutic and regulatory oligonucleotides and the elucidation of nucleic acid-drug interactions. The influence of cisplatin binding on the gas-phase dissociation of nucleic acids was studied by the means of electrospray ionization tandem mass spectrometry. Experiments on native and modified DNA and RNA oligomers confirmed guanine base pairs as the preferred platination site and laid the basis for the formulation of a gas-phase fragmentation mechanism of platinated oligonucleotides. The study was extended to double-stranded DNA and DNA quadruplexes. While duplexes are believed to be the main target of cisplatin in vivo, the recently discovered DNA quadruplexes constitute another promising target for anti-tumor drugs owing to their regulatory functions in the cell cycle.


Asunto(s)
Antineoplásicos/química , Cisplatino/química , ADN/química , Oligonucleótidos/química , ARN/química , Espectrometría de Masas en Tándem/métodos , ADN de Cadena Simple/química , Conformación de Ácido Nucleico
7.
Drug Test Anal ; 6(4): 363-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23733593

RESUMEN

During the last few years γ-hydroxybutyric acid (GHB) and γ-butyrolactone (GBL) have attracted much interest as recreational drugs and knock-out drops in drug-facilitated sexual assaults. This experiment aims at getting an insight into the pharmacokinetics of GHB after intake of GBL. Therefore Two volunteers took a single dose of 1.5 ml GBL, which had been spiked to a soft drink. Assuming that GBL was completely metabolized to GHB, the corresponding amount of GHB was 2.1 g. Blood and urine samples were collected 5 h and 24 h after ingestion, respectively. Additionally, hair samples (head hair and beard hair) were taken within four to five weeks after intake of GBL. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after protein precipitation with acetonitrile. The following observations were made: spiked to a soft drink, GBL, which tastes very bitter, formed a liquid layer at the bottom of the glass, only disappearing when stirring. Both volunteers reported weak central effects after approximately 15 min, which disappeared completely half an hour later. Maximum concentrations of GHB in serum were measured after 20 min (95 µg/ml and 106 µg/ml). Already after 4-5 h the GHB concentrations in serum decreased below 1 µg/ml. In urine maximum GHB concentrations (140 µg/ml and 120 µg/ml) were measured after 1-2 h, and decreased to less than 1 µg/ml within 8-10 h. The ratio of GHB in serum versus blood was 1.2 and 1.6.


Asunto(s)
4-Butirolactona/administración & dosificación , Hidroxibutiratos/sangre , Hidroxibutiratos/orina , Drogas Ilícitas/sangre , Drogas Ilícitas/orina , Adulto , Cromatografía Liquida/métodos , Humanos , Masculino , Persona de Mediana Edad , Oxibato de Sodio , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA