Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39380503

RESUMEN

SARS-CoV-2 nucleocapsid (N) protein is a structural component of the virus with essential roles in the replication and packaging of the viral RNA genome. The N protein is also an important target of COVID-19 antigen tests and a promising vaccine candidate along with the spike protein. Here, we report a compact stem-loop DNA aptamer that binds tightly to the N-terminal RNA-binding domain of SARS-CoV-2 N protein. Crystallographic analysis shows that a hexanucleotide DNA motif (5'-TCGGAT-3') of the aptamer fits into a positively charged concave surface of N-NTD and engages essential RNA-binding residues including Tyr109, which mediates a sequence-specific interaction in a uracil-binding pocket. Avid binding of the DNA aptamer allows isolation and sensitive detection of full-length N protein from crude cell lysates, demonstrating its selectivity and utility in biochemical applications. We further designed a chemically modified DNA aptamer and used it as a probe to examine the interaction of N-NTD with various RNA motifs, which revealed a strong preference for uridine-rich sequences. Our studies provide a high-affinity chemical probe for the SARS-CoV-2 N protein RNA-binding domain, which may be useful for diagnostic applications and investigating novel antiviral agents.

2.
Methods Enzymol ; 705: 311-345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389668

RESUMEN

In recent years, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become ever more apparent. This growing awareness and lack of inhibitory drugs has created a distinct need for biochemical tools that can be used to identify and characterize potential inhibitors of this family of enzymes. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay. The RADD assay provides a rapid, real-time fluorescence readout of APOBEC3 DNA deamination and serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit. This method improves upon contemporary DNA deamination assays by offering a more rapid and quantifiable readout as well as providing a platform that is readily adaptable to a high-throughput format for inhibitor discovery. In this chapter we provide a detailed guide for the usage of the RADD assay for the characterization of APOBEC3 enzymes and potential inhibitors.


Asunto(s)
ADN , Transferencia Resonante de Energía de Fluorescencia , Humanos , Transferencia Resonante de Energía de Fluorescencia/métodos , ADN/metabolismo , Desaminación , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Pruebas de Enzimas/métodos , Inhibidores Enzimáticos/farmacología , Desaminasas APOBEC/metabolismo
3.
PLoS Pathog ; 20(9): e1012522, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39259728

RESUMEN

Nirmatrelvir was the first protease inhibitor specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available protease inhibitors (nirmatrelvir and ensitrelvir) with cell-based, biochemical and SARS-CoV-2 replicon assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease inhibitor resistance mechanisms and show the relevance of specific mutations, thereby informing treatment decisions.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Farmacorresistencia Viral , Mutación , Inhibidores de Proteasas , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , Humanos , Farmacorresistencia Viral/genética , Inhibidores de Proteasas/farmacología , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Antivirales/farmacología , COVID-19/virología , Leucina/análogos & derivados , Leucina/genética , Leucina/farmacología , Animales , Betacoronavirus/genética , Betacoronavirus/efectos de los fármacos , Vesiculovirus/genética , Vesiculovirus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Lactamas , Nitrilos , Prolina
4.
bioRxiv ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39282293

RESUMEN

DNA deaminase toxins are involved in interbacterial antagonism and the generation of genetic diversity in surviving bacterial populations. These enzymes have also been adopted as genome engineering tools. The single-stranded (ss)DNA deaminase SsdA represents the bacterial deaminase toxin family-2 (BaDTF2) and it deaminates ssDNA cytosines with little sequence context dependence, which contrasts with the AID/APOBEC family of sequence-selective ssDNA cytosine deaminases. Here we report the crystal structure of SsdA in complex with a ssDNA substrate. The structure reveals a unique mode of substrate binding, in which a cluster of aromatic residues of SsdA engages ssDNA in a V-shaped conformation sharply bent across the target cytosine. The bases 5' or 3' to the target cytosine are stacked linearly and make few sequence-specific protein contacts, thus explaining the broad substrate selectivity of SsdA. Unexpectedly, SsdA contains a ß-amino acid isoaspartate, which is important for enzymatic activity and may contribute to the stability of SsdA as a toxin. Structure- function studies helped to design SsdA mutants active in human cells, which could lead to future applications in genome engineering.

5.
SLAS Discov ; 29(6): 100181, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173830

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, SARS2) is responsible for the COVID-19 pandemic and infections that continue to affect the lives of millions of people worldwide, especially those who are older and/or immunocompromised. The SARS2 main protease enzyme, Mpro (also called 3C-like protease, 3CLpro), is a bona fide drug target as evidenced by potent inhibition with nirmatrelvir and ensitrelvir, the active components of the drugs Paxlovid and Xocova, respectively. However, the existence of nirmatrelvir and ensitrelvir-resistant isolates underscores the need to develop next-generation drugs with different resistance profiles and/or distinct mechanisms of action. Here, we report the results of a high-throughput screen of 649,568 compounds using a cellular gain-of-signal assay. In this assay, Mpro inhibits expression of a luciferase reporter, and 8,777 small molecules were considered hits by causing a gain in luciferase activity 3x SD above the sample field activity (6.8% gain-of-signal relative to 100 µM GC376). Single concentration and dose-response gain-of-signal experiments confirmed 3,522/8,762 compounds as candidate inhibitors. In parallel, all initial high-throughput screening hits were tested in a peptide cleavage assay with purified Mpro and only 39/8,762 showed inhibition. Importantly, 19/39 compounds (49%) re-tested positive in both SARS2 assays, including two previously reported Mpro inhibitors, demonstrating the efficacy of the overall screening strategy. This approach led to the rediscovery of known Mpro inhibitors such as calpain inhibitor II, as well as to the discovery of novel compounds that provide chemical information for future drug development efforts.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Ensayos Analíticos de Alto Rendimiento , SARS-CoV-2 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/genética , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasas/farmacología , Descubrimiento de Drogas/métodos , COVID-19/virología , Bibliotecas de Moléculas Pequeñas/farmacología
6.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712210

RESUMEN

APOBEC3B cytosine deaminase contributes to the mutational burdens of tumors, resulting in tumor progression and therapy resistance. Small molecule APOBEC3B inhibitors have potential to slow or mitigate these detrimental outcomes. Through molecular dynamics (MD) simulations and computational solvent mapping analysis, we identified a novel putative allosteric pocket on the C-terminal domain of APOBEC3B (A3Bctd), and virtually screened the ChemBridge Diversity Set (N~110,000) against both the active and potential allosteric sites. Selected high-scoring compounds were subsequently purchased, characterized for purity and composition, and tested in biochemical assays, which yielded 13 hit compounds. Orthogonal NMR assays verified binding to the target protein. Initial selectivity studies suggest these compounds preferentially target A3Bctd over related deaminase APOBEC3A (A3A), and MD simulations indicate this selectivity may be due to the steric repulsion from H56 that is unique to A3A. Taken together, our studies represent the first virtual screening effort against A3Bctd that has yielded candidate inhibitors suitable for further development.

7.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766133

RESUMEN

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics and also offering a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.

8.
J Biol Chem ; 300(6): 107410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796062

RESUMEN

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics. The assay also offers a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.


Asunto(s)
Citidina Desaminasa , ADN , Humanos , Desaminación , Citidina Desaminasa/metabolismo , ADN/metabolismo , ADN/química , Cinética , Desaminasas APOBEC/metabolismo , Inhibidores Enzimáticos/farmacología
9.
SLAS Discov ; 29(5): 100164, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796112

RESUMEN

Zika virus (ZIKV) continues to pose a significant global public health threat, with recurring regional outbreaks and potential for pandemic spread. Despite often being asymptomatic, ZIKV infections can have severe consequences, including neurological disorders and congenital abnormalities. Unfortunately, there are currently no approved vaccines or antiviral drugs for the prevention or treatment of ZIKV. One promising target for drug development is the ZIKV NS2B-NS3 protease due to its crucial role in the virus life cycle. In this study, we established a cell-based ZIKV protease inhibition assay designed for high-throughput screening (HTS). Our assay relies on the ZIKV protease's ability to cleave a cyclised firefly luciferase fused to a natural cleavage sequence between NS2B and NS3 protease within living cells. We evaluated the performance of our assay in HTS setting using the pharmacologic controls (JNJ-40418677 and MK-591) and by screening a Library of Pharmacologically Active Compounds (LOPAC). The results confirmed the feasibility of our assay for compound library screening to identify potential ZIKV protease inhibitors.


Asunto(s)
Antivirales , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Inhibidores de Proteasas , Infección por el Virus Zika , Virus Zika , Virus Zika/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteasas/farmacología , Humanos , Antivirales/farmacología , Descubrimiento de Drogas/métodos , Infección por el Virus Zika/virología , Infección por el Virus Zika/tratamiento farmacológico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Animales , Proteasas Virales , Nucleósido-Trifosfatasa , ARN Helicasas DEAD-box
10.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746158

RESUMEN

Acquired genetic alterations commonly drive resistance to endocrine and targeted therapies in metastatic breast cancer 1-7 , however the underlying processes engendering these diverse alterations are largely uncharacterized. To identify the mutational processes operant in breast cancer and their impact on clinical outcomes, we utilized a well-annotated cohort of 3,880 patient samples with paired tumor-normal sequencing data. The mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were highly prevalent and enriched in post-treatment compared to treatment-naïve hormone receptor-positive (HR+) cancers. APOBEC3 mutational signatures were independently associated with shorter progression-free survival on antiestrogen plus CDK4/6 inhibitor combination therapy in patients with HR+ metastatic breast cancer. Whole genome sequencing (WGS) of breast cancer models and selected paired primary-metastatic samples demonstrated that active APOBEC3 mutagenesis promoted resistance to both endocrine and targeted therapies through characteristic alterations such as RB1 loss-of-function mutations. Evidence of APOBEC3 activity in pre-treatment samples illustrated a pervasive role for this mutational process in breast cancer evolution. The study reveals APOBEC3 mutagenesis to be a frequent mediator of therapy resistance in breast cancer and highlights its potential as a biomarker and target for overcoming resistance.

11.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617360

RESUMEN

APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.

12.
Proc Natl Acad Sci U S A ; 121(13): e2309925121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502701

RESUMEN

Human retroviruses are derived from simian ones through cross-species transmission. These retroviruses are associated with little pathogenicity in their natural hosts, but in humans, HIV causes AIDS, and human T-cell leukemia virus type 1 (HTLV-1) induces adult T-cell leukemia-lymphoma (ATL). We analyzed the proviral sequences of HTLV-1, HTLV-2, and simian T-cell leukemia virus type 1 (STLV-1) from Japanese macaques (Macaca fuscata) and found that APOBEC3G (A3G) frequently generates G-to-A mutations in the HTLV-1 provirus, whereas such mutations are rare in the HTLV-2 and STLV-1 proviruses. Therefore, we investigated the mechanism of how HTLV-2 is resistant to human A3G (hA3G). HTLV-1, HTLV-2, and STLV-1 encode the so-called antisense proteins, HTLV-1 bZIP factor (HBZ), Antisense protein of HTLV-2 (APH-2), and STLV-1 bZIP factor (SBZ), respectively. APH-2 efficiently inhibits the deaminase activity of both hA3G and simian A3G (sA3G). HBZ and SBZ strongly suppress sA3G activity but only weakly inhibit hA3G, suggesting that HTLV-1 is incompletely adapted to humans. Unexpectedly, hA3G augments the activation of the transforming growth factor (TGF)-ß/Smad pathway by HBZ, and this activation is associated with ATL cell proliferation by up-regulating BATF3/IRF4 and MYC. In contrast, the combination of APH-2 and hA3G, or the combination of SBZ and sA3G, does not enhance the TGF-ß/Smad pathway. Thus, HTLV-1 is vulnerable to hA3G but utilizes it to promote the proliferation of infected cells via the activation of the TGF-ß/Smad pathway. Antisense factors in each virus, differently adapted to control host cellular functions through A3G, seem to dictate the pathogenesis.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Humanos , Línea Celular , Virulencia , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Leucemia-Linfoma de Células T del Adulto/genética , Provirus/genética , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Desaminasa APOBEC-3G/genética
13.
Nat Commun ; 15(1): 2370, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499542

RESUMEN

Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.


Asunto(s)
Neoplasias , Proteínas , Humanos , Mutación , Neoplasias/genética , Citidina Desaminasa/genética , Citidina Desaminasa/química , ADN , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/química , Citosina
15.
Res Sq ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496447

RESUMEN

Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.

16.
Mol Cell ; 84(5): 816-818, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458171

RESUMEN

In this issue of Molecular Cell, Vaisvila et al.1 report a tour de force functional characterization of a large and highly diverse set of polynucleotide cytosine deaminase (PCD) enzymes, which is already propelling new biotechnology applications.


Asunto(s)
Biotecnología , Citosina Desaminasa
17.
PLoS Genet ; 19(11): e1011043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38033156

RESUMEN

A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Mutación , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Línea Celular , ADN/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Citosina/metabolismo
18.
Genome Biol ; 24(1): 267, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001542

RESUMEN

BACKGROUND: RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied. RESULTS: Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing. Elevated and sustained levels of APOBEC3B lead to rapid alteration of cellular fitness, major organ dysfunction, and ultimately lethality in mice. Importantly, RNA-sequencing of mouse tissues expressing high levels of APOBEC3B identifies frequent UCC-to-UUC RNA editing events that are not evident in the corresponding genomic DNA. CONCLUSIONS: This work identifies, for the first time, a new deaminase-dependent function for APOBEC3B in RNA editing and presents a preclinical tool to help understand the emerging role of APOBEC3B as a driver of carcinogenesis.


Asunto(s)
Neoplasias , Edición de ARN , Humanos , Animales , Ratones , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Mutación , Neoplasias/patología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , ADN/metabolismo
19.
Nat Commun ; 14(1): 6382, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821454

RESUMEN

The normally antiviral enzyme APOBEC3A is an endogenous mutagen in human cancer. Its single-stranded DNA C-to-U editing activity results in multiple mutagenic outcomes including signature single-base substitution mutations (isolated and clustered), DNA breakage, and larger-scale chromosomal aberrations. APOBEC3A inhibitors may therefore comprise a unique class of anti-cancer agents that work by blocking mutagenesis, slowing tumor evolvability, and preventing detrimental outcomes such as drug resistance and metastasis. Here we reveal the structural basis of competitive inhibition of wildtype APOBEC3A by hairpin DNA bearing 2'-deoxy-5-fluorozebularine in place of the cytidine in the TC substrate motif that is part of a 3-nucleotide loop. In addition, the structural basis of APOBEC3A's preference for YTCD motifs (Y = T, C; D = A, G, T) is explained. The nuclease-resistant phosphorothioated derivatives of these inhibitors have nanomolar potency in vitro and block APOBEC3A activity in human cells. These inhibitors may be useful probes for studying APOBEC3A activity in cellular systems and leading toward, potentially as conjuvants, next-generation, combinatorial anti-mutator and anti-cancer therapies.


Asunto(s)
Neoplasias , Proteínas , Humanos , Proteínas/química , Mutagénesis , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , ADN , Citidina Desaminasa/genética , Citidina Desaminasa/química
20.
Cell Rep Med ; 4(10): 101211, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37797615

RESUMEN

The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many cancers. However, despite years of work, a causal relationship has yet to be established in vivo. Here, we report a murine model that expresses tumor-like levels of human APOBEC3B. Animals expressing full-body APOBEC3B appear to develop normally. However, adult males manifest infertility, and older animals of both sexes show accelerated rates of carcinogenesis, visual and molecular tumor heterogeneity, and metastasis. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Enrichment for APOBEC3B-attributable single base substitution mutations also associates with elevated levels of insertion-deletion mutations and structural variations. APOBEC3B catalytic activity is required for all of these phenotypes. Together, these studies provide a cause-and-effect demonstration that human APOBEC3B is capable of driving both tumor initiation and evolution in vivo.


Asunto(s)
Neoplasias , Adulto , Humanos , Animales , Ratones , Mutación , Neoplasias/genética , Transformación Celular Neoplásica , Citidina Desaminasa/genética , Antígenos de Histocompatibilidad Menor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA