Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 40(Supplement_1): i247-i256, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940165

RESUMEN

MOTIVATION: Acute kidney injury (AKI) is a syndrome that affects a large fraction of all critically ill patients, and early diagnosis to receive adequate treatment is as imperative as it is challenging to make early. Consequently, machine learning approaches have been developed to predict AKI ahead of time. However, the prevalence of AKI is often underestimated in state-of-the-art approaches, as they rely on an AKI event annotation solely based on creatinine, ignoring urine output.We construct and evaluate early warning systems for AKI in a multi-disciplinary ICU setting, using the complete KDIGO definition of AKI. We propose several variants of gradient-boosted decision tree (GBDT)-based models, including a novel time-stacking based approach. A state-of-the-art LSTM-based model previously proposed for AKI prediction is used as a comparison, which was not specifically evaluated in ICU settings yet. RESULTS: We find that optimal performance is achieved by using GBDT with the time-based stacking technique (AUPRC = 65.7%, compared with the LSTM-based model's AUPRC = 62.6%), which is motivated by the high relevance of time since ICU admission for this task. Both models show mildly reduced performance in the limited training data setting, perform fairly across different subcohorts, and exhibit no issues in gender transfer.Following the official KDIGO definition substantially increases the number of annotated AKI events. In our study GBDTs outperform LSTM models for AKI prediction. Generally, we find that both model types are robust in a variety of challenging settings arising for ICU data. AVAILABILITY AND IMPLEMENTATION: The code to reproduce the findings of our manuscript can be found at: https://github.com/ratschlab/AKI-EWS.


Asunto(s)
Lesión Renal Aguda , Unidades de Cuidados Intensivos , Humanos , Aprendizaje Automático , Masculino , Femenino , Árboles de Decisión , Anciano , Persona de Mediana Edad
2.
Bioinformatics ; 39(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527005

RESUMEN

MOTIVATION: Identifying peptides associated with the major histocompability complex class II (MHCII) is a central task in the evaluation of the immunoregulatory function of therapeutics and drug prototypes. MHCII-peptide presentation prediction has multiple biopharmaceutical applications, including the safety assessment of biologics and engineered derivatives in silico, or the fast progression of antigen-specific immunomodulatory drug discovery programs in immune disease and cancer. This has resulted in the collection of large-scale datasets on adaptive immune receptor antigenic responses and MHC-associated peptide proteomics. In parallel, recent deep learning algorithmic advances in protein language modeling have shown potential in leveraging large collections of sequence data and improve MHC presentation prediction. RESULTS: Here, we train a compact transformer model (AEGIS) on human and mouse MHCII immunopeptidome data, including a preclinical murine model, and evaluate its performance on the peptide presentation prediction task. We show that the transformer performs on par with existing deep learning algorithms and that combining datasets from multiple organisms increases model performance. We trained variants of the model with and without MHCII information. In both alternatives, the inclusion of peptides presented by the I-Ag7 MHC class II molecule expressed by nonobese diabetic mice enabled for the first time the accurate in silico prediction of presented peptides in a preclinical type 1 diabetes model organism, which has promising therapeutic applications. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/Novartis/AEGIS.


Asunto(s)
Diabetes Mellitus Experimental , Humanos , Ratones , Animales , Ratones Endogámicos NOD , Antígenos de Histocompatibilidad Clase II/metabolismo , Péptidos/química , Antígenos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA