Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14289, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652952

RESUMEN

In this study, Nb2CTx MXene reinforced commercially pure magnesium composite was processed using traditional blend-press-sinter technique. The added one volume percentage of Nb2CTx MXene was fairly dispersed around the magnesium particles despite having sporadic clustering. Nb2CTx MXene reinforcement was stable and developed defect free strong interfacial bonding with the magnesium matrix. The small amount of chemically compatible and thermally stable Nb2CTx MXene reinforcement was successful in enhancing the bulk hardness and compressive yield strength, compressive strength, ductility and fracture toughness of the commercially pure magnesium.

2.
Materials (Basel) ; 15(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36013806

RESUMEN

An attempt is made to cover the whole of the topic of biodegradable magnesium (Mg) alloys with a focus on the biocompatibility of the individual alloying elements, as well as shed light on the degradation characteristics, microstructure, and mechanical properties of most binary alloys. Some of the various work processes carried out by researchers to achieve the alloys and their surface modifications have been highlighted. Additionally, a brief look into the literature on magnesium composites as also been included towards the end, to provide a more complete picture of the topic. In most cases, the chronological order of events has not been particularly followed, and instead, this work is concentrated on compiling and presenting an update of the work carried out on the topic of biodegradable magnesium alloys from the recent literature available to us.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA