Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(5): 2258-2263, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38323342

RESUMEN

Exploration for commercially viable natural hydrogen accumulations within the Earth's crust, here compared to 'foraging' for wild food, holds promise. However, a potentially more effective strategy lies in the in situ artificial generation of hydrogen in natural underground reservoirs, akin to 'farming'. Both biotic and abiotic processes can be employed, converting introduced or indigenous components, gases, and nutrients into hydrogen. Through studying natural hydrogen-generating reactions, we can discern pathways for optimized engineering. Some reactions may be inherently slow, allowing for a 'seed and leave' methodology, where sites are infused with gases, nutrients, and specific bacterial strains, then left to gradually produce hydrogen. However, other reactions could offer quicker outcomes to harvest hydrogen. A crucial element of this strategy is our innovative concept of 'X' components-ranging from trace minerals to bioengineered microbes. These designed components enhance biotic and/or abiotic reactions and prove vital in accelerating hydrogen production. Drawing parallels with our ancestors' transition from hunter-gathering to agriculture, we propose a similar paradigm shift in the pursuit of hydrogen energy. As we transition towards a hydrogen-centric energy landscape, the amalgamation of geochemistry, advanced biology, and engineering emerges as a beacon, signalling a pathway towards a sustainable and transformative energy future.


Asunto(s)
Agricultura , Hidrógeno , Fenómenos Físicos
2.
Chemosphere ; 345: 140469, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858769

RESUMEN

Effectively storing carbon dioxide (CO2) in geological formations synergizes with algal-based removal technology, enhancing carbon capture efficiency, leveraging biological processes for sustainable, long-term sequestration while aiding ecosystem restoration. On the other hand, geological carbon storage effectiveness depends on the interactions and wettability of rock, CO2, and brine. Rock wettability during storage determines the CO2/brine distribution, maximum storage capacity, and trapping potential. Due to the high CO2 reactivity and damage risk, an experimental assessment of the CO2 wettability on storage/caprocks is challenging. Data-driven machine learning (ML) models provide an efficient and less strenuous alternative, enabling research at geological storage conditions that are impossible or hazardous to achieve in the laboratory. This study used robust ML models, including fully connected feedforward neural networks (FCFNNs), extreme gradient boosting, k-nearest neighbors, decision trees, adaptive boosting, and random forest, to model the wettability of the CO2/brine and rock minerals (quartz and mica) in a ternary system under varying conditions. Exploratory data analysis methods were used to examine the experimental data. The GridSearchCV and Kfold cross-validation approaches were implemented to augment the performance abilities of the ML models. In addition, sensitivity plots were generated to study the influence of individual parameters on the model performance. The results indicated that the applied ML models accurately predicted the wettability behavior of the mineral/CO2/brine system under various operating conditions, where FCFNN performed better than other ML techniques with an R2 above 0.98 and an error of less than 3%.


Asunto(s)
Dióxido de Carbono , Ecosistema , Humectabilidad , Minerales
3.
Environ Sci Technol Lett ; 10(7): 551-556, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37455863

RESUMEN

Increasing greenhouse gas emissions have put pressure on global economies to adopt strategies for climate-change mitigation. Large-scale geological hydrogen storage in salt caverns and porous rocks has the potential to achieve sustainable energy storage, contributing to the development of a low-carbon economy. During geological storage, hydrogen is injected and extracted through cemented and cased wells. In this context, well integrity and leakage risk must be assessed through in-depth investigations of the hydrogen-cement-rock physical and geochemical processes. There are significant scientific knowledge gaps pertaining to hydrogen-cement interactions, where chemical reactions among hydrogen, in situ reservoir fluids, and cement could degrade the well cement and put the integrity of the storage system at risk. Results from laboratory batch reaction experiments concerning the influence of hydrogen on cement samples under simulated reservoir conditions of North Sea fields, including temperature, pressure, and salinity, provided valuable insights into the integrity of cement for geological hydrogen storage. This work shows that, under the experimental conditions, hydrogen does not induce geochemical or structural alterations to the tested wellbore cements, a promising finding for secure hydrogen subsurface storage.

4.
ACS Energy Lett ; 7(7): 2203-2210, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35844470

RESUMEN

The geological storage of hydrogen is necessary to enable the successful transition to a hydrogen economy and achieve net-zero emissions targets. Comprehensive investigations must be undertaken for each storage site to ensure their long-term suitability and functionality. As such, the systematic infrastructure and potential risks of large-scale hydrogen storage must be established. Herein, we conducted over 250 batch reaction experiments with different types of reservoir sandstones under conditions representative of the subsurface, reflecting expected time scales for geological hydrogen storage, to investigate potential reactions involving hydrogen. Each hydrogen experiment was paired with a hydrogen-free control under otherwise identical conditions to ensure that any observed reactions were due to the presence of hydrogen. The results conclusively reveal that there is no risk of hydrogen loss or reservoir integrity degradation due to abiotic geochemical reactions in sandstone reservoirs.

5.
Phys Chem Chem Phys ; 23(42): 24249-24264, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34668900

RESUMEN

Quantification of hydrates in permafrost sediments using conventional seismic techniques has always been a major challenge in the study of the climate-driven evolution of gas hydrate-bearing permafrost sediments due to almost identical acoustic properties of hydrates and ice. In this article, a coupled geophysical-geothermal scheme is developed, for the first time, to predict hydrate saturation in gas hydrate-bearing permafrost sediments by utilising their geophysical and geothermal responses. The scheme includes a geophysical part which interprets the measured elastic wave velocities using a rock-physics model, coupled with a geothermal part, interpreting the measured effective thermal conductivity (ETC) using a new pore-scale model. By conducting a series of sensitivity analyses, it is shown that the ETC model is able to incorporate the effect of the hydrate pore-scale habit and hydrate/ice-forced heave as well as the effect of unfrozen water saturation under frozen conditions. Given that the geophysical and geothermal responses depend on the overburden pressure, the elastic wave velocities and ETC of methane hydrate-bearing permafrost sediment samples were measured at different effective overburden pressures and the results were provided. These experimental data together with the results of our recent study on the geophysical and geothermal responses of gas hydrate-bearing permafrost sediment samples at different hydrate saturations are used to validate the performance of the coupled scheme. By comparing the predicted saturations with those obtained experimentally, it is shown that the coupled scheme is able to quantify the saturation of the co-existing phases with an acceptable accuracy in a wide range of hydrate saturations and at different overburden pressures.

6.
RSC Adv ; 11(24): 14334-14346, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35423992

RESUMEN

The present study investigates the evolution of gas hydrate-bearing permafrost sediments against the environmental temperature change. The elastic wave velocities and effective thermal conductivity (ETC) of simulated gas hydrate-bearing sediment samples were measured at a typical range of temperature in permafrost and wide range of hydrate saturation. The experimental results reveal the influence of several complex and interdependent pore-scale factors on the elastic wave velocities and ETC. It was observed that the geophysical and geothermal properties of the system are essentially governed by the thermal state, saturation and more significantly, pore-scale distribution of the co-existing phases. In particular, unfrozen water content substantially controls the heat transfer at sub-zero temperatures close to the freezing point. A conceptual pore-scale model was also proposed to describe the pore-scale distribution of each phase in a typical gas hydrate-bearing permafrost sediment. This study underpins necessity of distinguishing ice from gas hydrates in frozen sediments, and its outcome is essential to be considered not only for development of large-scale permafrost monitoring systems, bus also accurate quantification of natural gas hydrate as a potential sustainable energy resource in cold regions.

7.
Chem ; 6(9): 2135-2146, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32838053

RESUMEN

The surface stability and resulting transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), specifically in indoor environments, have been identified as a potential pandemic challenge requiring investigation. This novel virus can be found on various surfaces in contaminated sites such as clinical places; however, the behavior and molecular interactions of the virus with respect to the surfaces are poorly understood. Regarding this, the virus adsorption onto solid surfaces can play a critical role in transmission and survival in various environments. In this article, we first give an overview of existing knowledge concerning viral spread, molecular structure of SARS-CoV-2, and the virus surface stability is presented. Then, we highlight potential drivers of the SARS-CoV-2 surface adsorption and stability in various environmental conditions. This theoretical analysis shows that different surface and environmental conditions including temperature, humidity, and pH are crucial considerations in building fundamental understanding of the virus transmission and thereby improving safety practices.

8.
Sci Data ; 7(1): 222, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647110

RESUMEN

The use of hydrogen (H2) as a substitute for fossil fuel, which accounts for the majority of the world's energy, is environmentally the most benign option for the reduction of CO2 emissions. This will require gigawatt-scale storage systems and as such, H2 storage in porous rocks in the subsurface will be required. Accurate estimation of the thermodynamic and transport properties of H2 mixed with other gases found within the storage system is therefore essential for the efficient design for the processes involved in this system chain. In this study, we used the established and regarded GERG-2008 Equation of State (EoS) and SuperTRAPP model to predict the thermo-physical properties of H2 mixed with CH4, N2, CO2, and a typical natural gas from the North-Sea. The data covers a wide range of mole fraction of H2 (10-90 Mole%), pressures (0.01-100 MPa), and temperatures (200-500 K) with high accuracy and precision. Moreover, to increase ease of access to the data, a user-friendly software (H2Themobank) is developed and made publicly available.

9.
Chem Soc Rev ; 49(15): 5225-5309, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32567615

RESUMEN

Gas hydrates have received considerable attention due to their important role in flow assurance for the oil and gas industry, their extensive natural occurrence on Earth and extraterrestrial planets, and their significant applications in sustainable technologies including but not limited to gas and energy storage, gas separation, and water desalination. Given not only their inherent structural flexibility depending on the type of guest gas molecules and formation conditions, but also the synthetic effects of a wide range of chemical additives on their properties, these variabilities could be exploited to optimise the role of gas hydrates. This includes increasing their industrial applications, understanding and utilising their role in Nature, identifying potential methods for safely extracting natural gases stored in naturally occurring hydrates within the Earth, and for developing green technologies. This review summarizes the different properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast-growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on advances during the last decade. Challenges, limitations, and future perspectives of each field are briefly discussed. The overall objective of this review is to provide readers with an extensive overview of gas hydrates that we hope will stimulate further work on this riveting field.

10.
ACS Omega ; 5(13): 7124-7134, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32280853

RESUMEN

Solid deposition during production, transport, and storage of crude oils leads to significant technical problems and economic losses for the oil and gas industry. The thermodynamic equilibrium between high-molecular-weight components of crude oil, such as asphaltenes, resins, and waxes, is an important parameter for the stability of crude oil. Once the equilibrium is disturbed due to variations in temperature, pressure, and oil composition during production, the solubility of high-molecular-weight waxes decreases. This results in a decrease in the wax appearance temperature (WAT) and the deposit of wax onto solid surfaces. On the other hand, under these conditions, asphaltenes do not interact sufficiently with the resins/waxes and tend to flocculate among themselves and form asphaltene nanoaggregates. The role of waxes during the asphaltene aggregation and deposition has not been appropriately explained yet. The objective of this research study is to describe the interaction of asphaltenes and waxes and subsequently address the specific example of an asphaltenic oil commingled with a wax inhibitor-containing oil during the combination of different oil streams. It is a crucial building block for the development of a suitable and cost-effective strategy for the handling of wax/asphaltene associated flow assurance problems. In this work, the quartz crystal microbalance (QCM) technique has been used for the first time to investigate the effect of waxes and related chemicals, which are used to mitigate wax deposition, on asphaltene aggregation and deposition phenomena. Asphaltene onset point and asphaltene deposition rate have been monitored using QCM at high pressure-high temperature (HPHT) conditions. This study confirms that the different wax inhibitor chemistries result in significant differences in the pour point decrease and viscosity profiles in crude oil. Different wax inhibitors also showed different outcomes regarding the asphaltene deposition tendency. A comprehensive modeling study has also been conducted for mechanistic investigation of experimental results. In this regard, the perturbed chain statistical associating fluid theory equation of state (PC-SAFT EoS) was utilized to model the systems.

11.
Sci Rep ; 9(1): 16206, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31700072

RESUMEN

Large hydrate reservoirs in the Arctic regions could provide great potentials for recovery of methane and geological storage of CO2. In this study, injection of flue gas into permafrost gas hydrates reservoirs has been studied in order to evaluate its use in energy recovery and CO2 sequestration based on the premise that it could significantly lower costs relative to other technologies available today. We have carried out a series of real-time scale experiments under realistic conditions at temperatures between 261.2 and 284.2 K and at optimum pressures defined in our previous work, in order to characterize the kinetics of the process and evaluate efficiency. Results show that the kinetics of methane release from methane hydrate and CO2 extracted from flue gas strongly depend on hydrate reservoir temperatures. The experiment at 261.2 K yielded a capture of 81.9% CO2 present in the injected flue gas, and an increase in the CH4 concentration in the gas phase up to 60.7 mol%, 93.3 mol%, and 98.2 mol% at optimum pressures, after depressurizing the system to dissociate CH4 hydrate and after depressurizing the system to CO2 hydrate dissociation point, respectively. This is significantly better than the maximum efficiency reported in the literature for both CO2 sequestration and methane recovery using flue gas injection, demonstrating the economic feasibility of direct injection flue gas into hydrate reservoirs in permafrost for methane recovery and geological capture and storage of CO2. Finally, the thermal stability of stored CO2 was investigated by heating the system and it is concluded that presence of N2 in the injection gas provides another safety factor for the stored CO2 in case of temperature change.

12.
Environ Sci Technol ; 52(7): 4324-4330, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29513532

RESUMEN

Injection of flue gas or CO2-N2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO2. However, the thermodynamic process in which the CO2 present in flue gas or a CO2-N2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO2 capture efficiency on reservoir conditions. The CO2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO2 in the flue gas was captured and stored as CO2 hydrate or CO2-mixed hydrates, while methane-rich gas was produced. The efficiency of CO2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO2 can be captured from the injected flue gas or CO2-N2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO2 capture efficiency by flue gas or CO2-N2 mixtures injection.


Asunto(s)
Dióxido de Carbono , Agua , Metano , Yacimiento de Petróleo y Gas , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA