RESUMEN
BACKGROUND: Tooth cementum covers the surface of the root dentine and is produced and laid down in thin layers continuously throughout life. Functionally, different types of tooth cementum can be distinguished, which can be roughly divided into acellular (primary cementum) and cellular (secondary cementum) forms. One main type is acellular extrinsic fibre cementum (AEFC), which covers the cervical and middle third of the root. Light microscopic examinations of transverse sections of AEFC show lamellar patterns of alternating light and dark lines called growth or incremental lines. Following mammalian research, a seasonal rhythm of incremental line formation is also assumed in humans. Previous attempts at visualising incremental lines in the AEFC by scanning electron microscopy (SEM) were not particularly successful. The aim of the present study was to detect incremental lines in the AEFC and to analyse their underlying structure by SEM. METHODS: For this purpose, non-embedded and resin-embedded transverse and longitudinal sections of three single-rooted teeth obtained from different patients were investigated. The thin sections were not pre-treated (e.g. by etching, grinding or coating). RESULTS: Lamellar structures, which could be identified as incremental lines, were detectable in both transverse and longitudinal sections, with transverse orientation in the cross-section and longitudinal orientation in the longitudinal section. The lamellar pattern was created by broad fibre-rich layers alternating with narrow fibre-poor layers. The orientation of the collagen fibres changed from layer to layer from transverse to radial direction. The visibility of the layered structure discovered varied significantly. CONCLUSIONS: The study demonstrate that it is possible, in principle, to detect incremental lines in AEFC and to identify their basic structure using SEM. Our results suggest that the density and orientation of the fibres play an essential role in the formation of incremental lines. Functional aspects seem to be of particular importance.
Asunto(s)
Colágeno , Cemento Dental , Animales , Humanos , Mamíferos , Microscopía Electrónica de Rastreo , Raíz del DienteRESUMEN
The loss of the senses of smell (anosmia) and taste (ageusia) are rather common disorders, affecting up to 20% of the adult population. Yet, this condition has not received the attention it deserves, most probably because per se such a disorder is not life threatening. However, loss of olfactory function significantly reduces the quality of life of the affected patients, leading to dislike in food and insufficient, exaggerated or unbalanced food intake, unintentional exposure to toxins such as household gas, social isolation, depression, and an overall insecurity. Not only is olfactory dysfunction rather prevalent in the healthy population, it is, in many instances, also a correlate or an early indicator of a panoply of diseases. Importantly, olfactory dysfunction is linked to the two most prominent neurodegenerative disorders, Parkinson's disease and Alzheimer's disease. Anosmia and hyposmia (reduced sense of smell) affect a majority of patients years before the onset of cognitive or motor symptoms, establishing olfactory dysfunction as early biomarker that can enable earlier diagnosis and preventative treatments. In the current health crisis caused by SARS-CoV2, anosmia and dysgeusia as early-onset symptoms in virus-positive patients may prove to be highly relevant and crucial for pre-symptomatic Covid-19 detection from a public health perspective, preceding by days the more classical respiratory tract symptoms such as cough, tightness of the chest or fever. Thus, the olfactory system seems to be at the frontline of pathologic assault, be it through pathogens or insults that can lead to or at least associate with neurodegeneration. The aim of this review is to assemble current knowledge from different medical fields that all share a common denominator, olfactory/gustatory dysfunction, and to distill overarching etiologies and disease progression mechanisms.
RESUMEN
Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine-a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes-could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film-based processing. We achieve catalytic performance with geometric current densities of 18 mA cm-2 at 0.21 V overpotential (-0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm-1). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications.
RESUMEN
Iron (Fe(0) ) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H(2) S, and scavenge of 'cathodic' H(2) from chemical reaction of Fe(0) with H(2) O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe(0) year(-1) ), while conventional H(2) -scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO(3) , Mg/CaCO(3) ) deposited on the corroding metal exhibited electrical conductivity (50 S m(-1) ). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe(0) â 4Fe(2+) + 8e(-) ) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e(-) + SO(4) (2-) + 9H(+) â HS(-) + 4H(2) O). Hence, anaerobic microbial iron corrosion obviously bypasses H(2) rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments.
Asunto(s)
Conductividad Eléctrica , Hierro/metabolismo , Bacterias Reductoras del Azufre/metabolismo , Corrosión , Desulfovibrio/metabolismo , Sedimentos Geológicos/microbiología , Sulfatos/metabolismo , Sulfuros/metabolismoRESUMEN
Corrosion of iron presents a serious economic problem. Whereas aerobic corrosion is a chemical process, anaerobic corrosion is frequently linked to the activity of sulphate-reducing bacteria (SRB). SRB are supposed to act upon iron primarily by produced hydrogen sulphide as a corrosive agent and by consumption of 'cathodic hydrogen' formed on iron in contact with water. Among SRB, Desulfovibrio species--with their capacity to consume hydrogen effectively--are conventionally regarded as the main culprits of anaerobic corrosion; however, the underlying mechanisms are complex and insufficiently understood. Here we describe novel marine, corrosive types of SRB obtained via an isolation approach with metallic iron as the only electron donor. In particular, a Desulfobacterium-like isolate reduced sulphate with metallic iron much faster than conventional hydrogen-scavenging Desulfovibrio species, suggesting that the novel surface-attached cell type obtained electrons from metallic iron in a more direct manner than via free hydrogen. Similarly, a newly isolated Methanobacterium-like archaeon produced methane with iron faster than do known hydrogen-using methanogens, again suggesting a more direct access to electrons from iron than via hydrogen consumption.