Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurocrit Care ; 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39455525

RESUMEN

BACKGROUND: Management of intracerebral hemorrhage (ICH) is challenged by limited therapeutic options and a complex relationship between blood pressure (BP) dynamics, especially BP variability (BPV) and ICH outcome. METHODS: In an exploratory analysis of prospectively collected data on consecutive patients with nontraumatic ICH between 2015 and 2020, continuous BP accessed via an arterial line extracted from the Intellispace Critical Care and Anesthesia information system (Philips Healthcare) was analyzed over the first 72 h post admission. Arterial lines were used as part of standard clinical practice in the intensive care, ensuring high fidelity and real-time data essential for acute care settings. BPV was assessed through successive variation (SV), standard deviation (SD), and coefficient of variation using all available BP measurements. Multivariate regression models were applied to evaluate the association between BPV indices and functional outcome at 3 months. RESULTS: Among 261 patients (mean age 69.6 ± 15.2 years, 47.9% female, median National Institutes of Health Stroke Scale [NIHSS] score 6 [interquartile range 2-12]) analyzed, lower systolic BP upon admission (< 140 mm Hg) and lower systolic BPV were significantly associated with favorable outcome, whereas higher diastolic BPV correlated with improved outcomes. In the multivariate analysis, diastolic BPV (SD, SV) within the first 72 h post admission emerged as an independent predictor of good functional outcome (modified Rankin Scale score < 3; odds ratio 1.123, 95% confidence interval CI 1.008-1.184, p = 0.035), whereas systolic BPV (SD) showed a negative association. Patients with better outcomes also exhibited distinct clinical characteristics, including younger age, lower median NIHSS scores, and less prevalence of anticoagulation therapy upon admission. CONCLUSIONS: This study shows the prognostic value of BPV in the acute phase of ICH. Lower systolic BPV (SD) and higher diastolic BPV (SD, SV) were associated with better functional outcomes, challenging traditional BP management strategies. These findings might help to tailor a personalized BP management in ICH.

2.
Neurol Int ; 16(5): 992-1004, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39311348

RESUMEN

Endothelial dysfunction represents a potential pathomechanism of neurological post-COVID-19 syndrome (PCS). A recent study demonstrated reduced cerebrovascular reactivity (CVR) in patients with PCS. The aim of this pilot study was to prospectively assess CVR in patients with PCS using breath-hold functional MRI (bh-fMRI). Fourteen patients with neurological PCS and leading symptoms of fatigue/memory issues/concentration disorder (PCSfmc), 11 patients with PCS and leading symptoms of myopathy/neuropathy (PCSmn), and 17 healthy controls underwent bh-fMRI. Signal change and time to peak (TTP) were assessed globally and in seven regions of interest and compared between the subgroups using one-way ANCOVA adjusting for age, time since infection, Fazekas score, and sex. No significant differences were observed. In PCS patients, the global CVR exhibited a slight, non-significant tendency to be lower compared to healthy controls (PCSfmc: 0.78 ± 0.11%, PCSmn: 0.84 ± 0.10% and 0.87 ± 0.07%). There was a non-significant trend towards lower global TTP values in the PCS subgroups than in the control group (PCSfmc: 26.41 ± 1.39 s, PCSmn: 26.32 ± 1.36 s versus 29.52 ± 0.93 s). Endothelial dysfunction does not seem to be the sole pathomechanism of neurological symptoms in PCS. Further studies in larger cohorts are required.

3.
Cancers (Basel) ; 16(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123372

RESUMEN

The aim was to explore the performance of dynamic contrast-enhanced (DCE) MRI and diffusion kurtosis imaging (DKI) in differentiating the molecular subtypes of adult-type gliomas. A multicenter MRI study with standardized imaging protocols, including DCE-MRI and DKI data of 81 patients with WHO grade 2-4 gliomas, was performed at six centers. The DCE-MRI and DKI parameter values were quantitatively evaluated in ROIs in tumor tissue and contralateral normal-appearing white matter. Binary logistic regression analyses were performed to differentiate between high-grade (HGG) vs. low-grade gliomas (LGG), IDH1/2 wildtype vs. mutated gliomas, and high-grade astrocytic tumors vs. high-grade oligodendrogliomas. Receiver operating characteristic (ROC) curves were generated for each parameter and for the regression models to determine the area under the curve (AUC), sensitivity, and specificity. Significant differences between tumor groups were found in the DCE-MRI and DKI parameters. A combination of DCE-MRI and DKI parameters revealed the best prediction of HGG vs. LGG (AUC = 0.954 (0.900-1.000)), IDH1/2 wildtype vs. mutated gliomas (AUC = 0.802 (0.702-0.903)), and astrocytomas/glioblastomas vs. oligodendrogliomas (AUC = 0.806 (0.700-0.912)) with the lowest Akaike information criterion. The combination of DCE-MRI and DKI seems helpful in predicting glioma types according to the 2021 World Health Organization's (WHO) classification.

4.
Biomedicines ; 12(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39200341

RESUMEN

BACKGROUND: The relationship between heart rate variability (HRV) changes potentially indicating autonomic dysregulation following spontaneous intracerebral hemorrhage (ICH) and functional outcome has not yet been fully elucidated. This study investigated the effects of HRV during the initial 96 h after admission on 90-day functional outcome in ICH patients. METHODS: We included patients with spontaneous ICH in a prospective cohort single-center study. Continuous HR data were retrieved from the Intellispace Critical Care and Anesthesia information system (Philips Healthcare) and analyzed within the following time intervals: 0-2, 0-8, 0-12, 0-24, 0-48, 0-72, and 8-16, 16-24, 24-48, 48-72, 72-96 h after admission. HRV was determined from all available HR values by calculating the successive variability (SV), standard deviation (SD), and coefficient of variation (CV). Low HRV was set as SD ≤ 11.4 ms, and high HRV as SD > 11.4 ms. The clinical severity of ICH was assessed using the National Institutes of Health Stroke Scale (NIHSS) and functional outcome using the modified Rankin Scale (mRS). Good functional outcome was defined as mRS 0-2. RESULTS: The cohort included 261 ICH patients (mean age ± SD 69.6 ± 16.5 years, 48.7% female, median NIHSS 6 (2, 12), median ICH score 1 (0, 2), of whom 106 (40.6%) had good functional outcome. All patients had the lowest HRV at admission, which increased during the first two days. Comparing ICH patients with low HRV (n = 141) and high HRV (n = 118), those with good outcome showed significantly lower HRV during the first three days (0-72 h: HRV SD good outcome 10.6 ± 3.5 ms vs. poor outcome 12.0 ± 4.0 ms; p = 0.004). Logistic regression revealed that advanced age, high premorbid mRS, and high NIHSS at admission were significant predictors of poor functional outcome, while reduced SD of HRV showed a non-significant trend towards good functional outcome (0-72 h: OR 0.898; CI 0.800-1.008; p = 0.067). CONCLUSIONS: Our results indicate autonomic dysfunction with sympathetic hyperactivity after spontaneous ICH, as reflected by the evidence of the lower HRV in the first days. Initially increased sympathetic tone appears to have a protective effect, as suggested by the comparatively lower HRV in patients with good functional outcome at the first days.

5.
Nat Commun ; 15(1): 6870, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39127809

RESUMEN

Current treatment outcome of patients with glioblastoma (GBM) remains poor. Following standard therapy, recurrence is universal with limited survival. Tumors from 173 GBM patients are analysed for somatic mutations to generate a personalized peptide vaccine targeting tumor-specific neoantigens. All patients were treated within the scope of an individual healing attempt. Among all vaccinated patients, including 70 treated prior to progression (primary) and 103 treated after progression (recurrent), the median overall survival from first diagnosis is 31.9 months (95% CI: 25.0-36.5). Adverse events are infrequent and are predominantly grade 1 or 2. A vaccine-induced immune response to at least one of the vaccinated peptides is detected in blood samples of 87 of 97 (90%) monitored patients. Vaccine-specific T-cell responses are durable in most patients. Significantly prolonged survival is observed for patients with multiple vaccine-induced T-cell responses (53 months) compared to those with no/low induced responses (27 months; P = 0.03). Altogether, our results highlight that the application of personalized neoantigen-targeting peptide vaccine is feasible and represents a promising potential treatment option for GBM patients.


Asunto(s)
Neoplasias Encefálicas , Vacunas contra el Cáncer , Glioblastoma , Medicina de Precisión , Vacunas de Subunidades Proteicas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Glioblastoma/inmunología , Glioblastoma/terapia , Medicina de Precisión/métodos , Vacunas de Subunidades Proteicas/inmunología , Vacunas de Subunidades Proteicas/uso terapéutico , Linfocitos T/inmunología , Resultado del Tratamiento
6.
Diagnostics (Basel) ; 14(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001327

RESUMEN

Before revascularization, moyamoya patients require hemodynamic evaluation. In this study, we evaluated the scoring system Prior Infarcts, Reactivity and Angiography in Moyamoya Disease (PIRAMID). We also devised a new scoring system, MRI-Based Assessment of Risk for Stroke in Moyamoya Angiopathy (MARS-MMA), and compared the scoring systems with respect to the capability to predict impaired [15O]water PET cerebral perfusion reserve capacity (CPR). We evaluated 69 MRI, 69 DSA and 38 [15O]water PET data sets. The PIRAMID system was validated by ROC curve analysis with neurological symptomatology as a dependent variable. The components of the MARS-MMA system and their weightings were determined by binary logistic regression analysis. The comparison of PIRAMID and MARS-MMA was performed by ROC curve analysis. The PIRAMID score correlated well with the symptomatology (AUC = 0.784). The MARS-MMA system, including impaired breath-hold-fMRI, the presence of the Ivy sign and arterial wall contrast enhancement, correlated slightly better with CPR impairment than the PIRAMID system (AUC = 0.859 vs. 0.827, Akaike information criterion 140 vs. 146). For simplified clinical use, we determined three MARS-MMA grades without loss of diagnostic performance (AUC = 0.855). The entirely MRI-based MARS-MMA scoring system might be a promising tool to predict the risk of stroke.

8.
Cancers (Basel) ; 16(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791906

RESUMEN

A fully diagnostic MRI glioma protocol is key to monitoring therapy assessment but is time-consuming and especially challenging in critically ill and uncooperative patients. Artificial intelligence demonstrated promise in reducing scan time and improving image quality simultaneously. The purpose of this study was to investigate the diagnostic performance, the impact on acquisition acceleration, and the image quality of a deep learning optimized glioma protocol of the brain. Thirty-three patients with histologically confirmed glioblastoma underwent standardized brain tumor imaging according to the glioma consensus recommendations on a 3-Tesla MRI scanner. Conventional and deep learning-reconstructed (DLR) fluid-attenuated inversion recovery, and T2- and T1-weighted contrast-enhanced Turbo spin echo images with an improved in-plane resolution, i.e., super-resolution, were acquired. Two experienced neuroradiologists independently evaluated the image datasets for subjective image quality, diagnostic confidence, tumor conspicuity, noise levels, artifacts, and sharpness. In addition, the tumor volume was measured in the image datasets according to Response Assessment in Neuro-Oncology (RANO) 2.0, as well as compared between both imaging techniques, and various clinical-pathological parameters were determined. The average time saving of DLR sequences was 30% per MRI sequence. Simultaneously, DLR sequences showed superior overall image quality (all p < 0.001), improved tumor conspicuity and image sharpness (all p < 0.001, respectively), and less image noise (all p < 0.001), while maintaining diagnostic confidence (all p > 0.05), compared to conventional images. Regarding RANO 2.0, the volume of non-enhancing non-target lesions (p = 0.963), enhancing target lesions (p = 0.993), and enhancing non-target lesions (p = 0.951) did not differ between reconstruction types. The feasibility of the deep learning-optimized glioma protocol was demonstrated with a 30% reduction in acquisition time on average and an increased in-plane resolution. The evaluated DLR sequences improved subjective image quality and maintained diagnostic accuracy in tumor detection and tumor classification according to RANO 2.0.

9.
Diagnostics (Basel) ; 14(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611589

RESUMEN

A 61-year-old patient was diagnosed with a left-sided falx meningioma. Histopathological analysis following extirpation showed a meningothelial meningioma ZNS WHO grade 1 with sparse mitoses. Over the course of 12 years, the patient received irradiation (54.0 Gy), peptide radio-receptor therapy (177Lu-DOMITATE) and targeted therapy (mTOR inhibitor). Follow-up imaging revealed an increased size of the residual tumor. Due to increased liver function parameters, imaging of the liver was performed, showing widespread space-occupying lesions with atypical appearance. Biopsy revealed metastasis of the meningioma, now with 2.7 mitoses/mm2, necrosis and homozygous CDKN2A/B deletion, corresponding to an anaplastic CNS meningioma WHO grade 3. A second small meningioma on the left petroclival side has been consistent in size over 12 years. Metastatic meningiomas pose a pertinent clinical challenge due to poor prognosis. The lung, bone, liver and cervical lymph nodes are the most common sites of extracranial metastasis. According to the World Health Organization criteria, the most important predictive factor for recurrence and metastasis is the tumor grade.

10.
Neurooncol Adv ; 6(1): vdae053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680987

RESUMEN

Background: Little is known about the growth dynamics of untreated glioblastoma and its possible influence on postoperative survival. Our aim was to analyze a possible association of preoperative growth dynamics with postoperative survival. Methods: We performed a retrospective analysis of all adult patients surgically treated for newly diagnosed glioblastoma at our center between 2010 and 2020. By volumetric analysis of data of patients with availability of ≥3 preoperative sequential MRI, a growth pattern was aimed to be identified. Main inclusion criterion for further analysis was the availability of two preoperative MRI scans with a slice thickness of 1 mm, at least 7 days apart. Individual growth rates were calculated. Association with overall survival (OS) was examined by multivariable. Results: Out of 749 patients screened, 13 had ≥3 preoperative MRI, 70 had 2 MRI and met the inclusion criteria. A curve estimation regression model showed the best fit for exponential tumor growth. Median tumor volume doubling time (VDT) was 31 days, median specific growth rate (SGR) was 2.2% growth per day. SGR showed negative correlation with tumor size (rho = -0.59, P < .001). Growth rates were dichotomized according to the median SGR.OS was significantly longer in the group with slow growth (log-rank: P = .010). Slower preoperative growth was independently associated with longer overall survival in a multivariable Cox regression model for patients after tumor resection. Conclusions: Especially small lesions suggestive of glioblastoma showed exponential tumor growth with variable growth rates and a median VDT of 31 days. SGR was significantly associated with OS in patients with tumor resection in our sample.

11.
Neurosurgery ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687044

RESUMEN

BACKGROUND AND OBJECTIVES: The underlying pathophysiological cause of moyamoya angiopathy (MMA) is still unclear. High-resolution vessel wall imaging has become a useful tool. The aim was to study vessel wall contrast-enhancement (VW-CE) as an imaging marker to predict disease progression in MMA. METHODS: Patients with MMA, who had undergone serial contrast-enhanced high-resolution MRI with concomitant and follow-up digital subtraction angiography, were analyzed retrospectively. VW-CE was semiquantified by measurement of the signal intensity of the vessel wall in in contrast-enhanced high-resolution MRI. A comparative quotient with the contrast-intensity of the pituitary stalk was calculated and graded accordingly from grade 1 to 5. VW-CE status was correlated with disease status, stroke, cerebrovascular reactivity in CO2-triggered blood-oxygen level-dependent MRI, angiographic disease progression, revascularization surgery, and follow-up imaging. RESULTS: Forty eight patients met the inclusion criteria. N = 56 MRI and digital subtraction angiography time-intervals were evaluated for 12 vessel sections per hemisphere each (N = 1344). N = 38 (79%) patients showed VW-CE and N = 10 (21%) did not. VW-CE was only observed in the terminal internal carotid artery and the proximal circle of Willis (N = 96/1344). Notably, patients with VW-CE significantly more often presented with acute infarction in the concomitant MRI. The incidence of angiographically proven disease progression was significantly associated with the incidence of VW-CE, and time to disease progression was earlier in higher grades of VW-CE compared with lower grades. CONCLUSION: VW-CE is a semiquantifiable marker for disease activity in patients with MMA and associated with disease progression and increased risk of stroke. VW-CE analysis can be routinely performed in patients with MMA to estimate the risk for disease progression and stroke.

12.
Neuroradiology ; 66(7): 1131-1140, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38492021

RESUMEN

PURPOSE: Vessel-encoded arterial spin labeling (VE-ASL) is able to provide noninvasive information about the contribution of individual arteries to the cerebral perfusion. The aim of this study was to compare VE-ASL to the diagnostic standard digital subtraction angiography (DSA) with respect to its ability to visualize vascular territories. METHODS: In total, 20 VE-ASL and DSA data sets of 17 patients with Moyamoya angiopathy with and without revascularization surgery were retrospectively analyzed. Two neuroradiologists independently assessed the agreement between VE-ASL and DSA using a 4-point Likert scale (no- very high agreement). Additionally, grading of the vascular supply of subterritories (A1-A2, M1-M6) on the VE-ASL images and angiograms was performed. The intermodal agreement was calculated for all subterritories in total and for the subdivision into without and after revascularization (direct or indirect bypass). RESULTS: There was a very high agreement between the VE-ASL and the DSA data sets (median = 1, modus = 1) with a substantial inter-rater agreement (kw = 0.762 (95% CI 0.561-0.963)). The inter-modality agreement between VE-ASL and DSA in vascular subterritories was almost perfect for all subterritories (k = 0.899 (0.865-0.945)), in the subgroup of direct revascularized subterritories (k = 0.827 (0.738-0.915)), in the subgroup of indirect revascularized subterritories (k = 0.843 (0.683-1.003)), and in the subgroup of never revascularized subterritories (k = 0.958 (0.899-1.017)). CONCLUSION: Vessel-encoded ASL seems to be a promising non-invasive method to depict the contributions of individual arteries to the cerebral perfusion before and after revascularization surgery.


Asunto(s)
Angiografía de Substracción Digital , Circulación Cerebrovascular , Enfermedad de Moyamoya , Marcadores de Spin , Humanos , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/cirugía , Angiografía de Substracción Digital/métodos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Angiografía Cerebral/métodos , Arterias Cerebrales/diagnóstico por imagen , Adolescente , Niño , Angiografía por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
13.
Radiol Med ; 129(3): 478-487, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38349416

RESUMEN

INTRODUCTION: Low back pain is a global health issue causing disability and missed work days. Commonly used MRI scans including T1-weighted and T2-weighted images provide detailed information of the spine and surrounding tissues. Artificial intelligence showed promise in improving image quality and simultaneously reducing scan time. This study evaluates the performance of deep learning (DL)-based T2 turbo spin-echo (TSE, T2DLR) and T1 TSE (T1DLR) in lumbar spine imaging regarding acquisition time, image quality, artifact resistance, and diagnostic confidence. MATERIAL AND METHODS: This retrospective monocentric study included 60 patients with lower back pain who underwent lumbar spinal MRI between February and April 2023. MRI parameters and DL reconstruction (DLR) techniques were utilized to acquire images. Two neuroradiologists independently evaluated image datasets based on various parameters using a 4-point Likert scale. RESULTS: Accelerated imaging showed significantly less image noise and artifacts, as well as better image sharpness, compared to standard imaging. Overall image quality and diagnostic confidence were higher in accelerated imaging. Relevant disk herniations and spinal fractures were detected in both DLR and conventional images. Both readers favored accelerated imaging in the majority of examinations. The lumbar spine examination time was cut by 61% in accelerated imaging compared to standard imaging. CONCLUSION: In conclusion, the utilization of deep learning-based image reconstruction techniques in lumbar spinal imaging resulted in significant time savings of up to 61% compared to standard imaging, while also improving image quality and diagnostic confidence. These findings highlight the potential of these techniques to enhance efficiency and accuracy in clinical practice for patients with lower back pain.


Asunto(s)
Aprendizaje Profundo , Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/diagnóstico por imagen , Inteligencia Artificial , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Vértebras Lumbares/diagnóstico por imagen , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos
14.
J Neuroimaging ; 34(2): 232-240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38195858

RESUMEN

BACKGROUND AND PURPOSE: This study explores the use of deep learning (DL) techniques in MRI of the orbit to enhance imaging. Standard protocols, although detailed, have lengthy acquisition times. We investigate DL-based methods for T2-weighted and T1-weighted, fat-saturated, contrast-enhanced turbo spin echo (TSE) sequences, aiming to improve image quality, reduce acquisition time, minimize artifacts, and enhance diagnostic confidence in orbital imaging. METHODS: In a 3-Tesla MRI study of 50 patients evaluating orbital diseases from March to July 2023, conventional (TSES ) and DL TSE sequences (TSEDL ) were used. Two neuroradiologists independently assessed the image datasets for image quality, diagnostic confidence, noise levels, artifacts, and image sharpness using a randomized and blinded 4-point Likert scale. RESULTS: TSEDL significantly reduced image noise and artifacts, enhanced image sharpness, and decreased scan time, outperforming TSES (p < .05). TSEDL showed superior overall image quality and diagnostic confidence, with relevant findings effectively detected in both DL-based and conventional images. In 94% of cases, readers preferred accelerated imaging. CONCLUSION: The study proved that using DL for MRI image reconstruction in orbital scans significantly cut acquisition time by 69%. This approach also enhanced image quality, reduced image noise, sharpened images, and boosted diagnostic confidence.


Asunto(s)
Aprendizaje Profundo , Órbita , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Artefactos
15.
Eur J Radiol ; 171: 111293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218066

RESUMEN

BACKGROUND AND PURPOSE: To evaluate the feasibility of a multimodal approach involving dynamic contrast-enhanced (DCE) perfusion imaging and diffusion kurtosis imaging (DKI) in the preoperative imaging of brain tumors in a multicenter setting, and to evaluate the effect on diagnostic confidence and accuracy for tumor grade and type prediction. MATERIALS AND METHODS: One hundred and thirty-three patients with brain tumors were imaged in six hospitals with a standardized multimodal protocol. Standard imaging and six parameter maps derived from DCE and DKI sequences were reviewed off-site by two independent readers. Image quality and diagnostic confidence were evaluated in qualitative analyses. Quantitative analyses were performed to assess diagnostic accuracy and the performance of DKI and DCE parameters for tumor grade differentiation and molecular tumor type determination. RESULTS: Standardized acquisition of DCE and DKI maps was feasible with excellent image quality. Diagnostic confidence was significantly improved from 85 % to 96 % (p = 0.0005) by additional review of the DCE and DKI maps. The combination of mean kurtosis and CBV was particularly advantageous for differentiating low-grade and high-grade glioma, oligodendroglial vs. astrocytic, and IDH1/2 wild type vs. mutated tumors. CONCLUSION: A multimodal imaging approach with DCE and DKI improves diagnostic confidence and yields higher diagnostic accuracy for predicting tumor grade and type in adult-type glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Glioma/diagnóstico por imagen , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imagen de Difusión Tensora , Perfusión , Imagen Multimodal , Imagen de Difusión por Resonancia Magnética/métodos
16.
Int J Stroke ; 19(1): 120-126, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37515459

RESUMEN

RATIONALE: Oxygen is essential for cellular energy metabolism. Neurons are particularly vulnerable to hypoxia. Increasing oxygen supply shortly after stroke onset could preserve the ischemic penumbra until revascularization occurs. AIMS: PROOF investigates the use of normobaric oxygen (NBO) therapy within 6 h of symptom onset/notice for brain-protective bridging until endovascular revascularization of acute intracranial anterior-circulation occlusion. METHODS AND DESIGN: Randomized (1:1), standard treatment-controlled, open-label, blinded endpoint, multicenter adaptive phase IIb trial. STUDY OUTCOMES: Primary outcome is ischemic core growth (mL) from baseline to 24 h (intention-to-treat analysis). Secondary efficacy outcomes include change in NIHSS from baseline to 24 h, mRS at 90 days, cognitive and emotional function, and quality of life. Safety outcomes include mortality, intracranial hemorrhage, and respiratory failure. Exploratory analyses of imaging and blood biomarkers will be conducted. SAMPLE SIZE: Using an adaptive design with interim analysis at 80 patients per arm, up to 456 participants (228 per arm) would be needed for 80% power (one-sided alpha 0.05) to detect a mean reduction of ischemic core growth by 6.68 mL, assuming 21.4 mL standard deviation. DISCUSSION: By enrolling endovascular thrombectomy candidates in an early time window, the trial replicates insights from preclinical studies in which NBO showed beneficial effects, namely early initiation of near 100% inspired oxygen during short temporary ischemia. Primary outcome assessment at 24 h on follow-up imaging reduces variability due to withdrawal of care and early clinical confounders such as delayed extubation and aspiration pneumonia. TRIAL REGISTRATIONS: ClinicalTrials.gov: NCT03500939; EudraCT: 2017-001355-31.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Humanos , Isquemia Encefálica/complicaciones , Procedimientos Endovasculares/métodos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/diagnóstico , Estudios Multicéntricos como Asunto , Oxígeno/uso terapéutico , Calidad de Vida , Trombectomía/métodos , Resultado del Tratamiento , Ensayos Clínicos Fase II como Asunto
17.
Dev Med Child Neurol ; 66(3): 353-361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37691416

RESUMEN

AIM: To assess how atypical language organization after early left-hemispheric brain lesions affects grey matter in the contralesional hemisphere. METHOD: This was a cross-sectional study with between-group comparisons of 14 patients (six female, 8-26 years) with perinatal left-hemispheric brain lesions (two arterial ischemic strokes, 11 periventricular haemorrhagic infarctions, one without classification) and 14 typically developing age-matched controls (TDC) with functional magnetic resonance imaging (fMRI) documented left-hemispheric language organization (six female, 8-28 years). MRI data were analysed with SPM12, CAT12, and custom scripts. Language lateralization indices were determined by fMRI within a prefrontal mask and right-hemispheric grey matter group differences by voxel-based morphometry (VBM). RESULTS: FMRI revealed left-dominance in seven patients with typical language organization (TYP) and right-dominance in seven patients with atypical language organization (ATYP) of 14 patients. VBM analysis of all patients versus controls showed grey matter reductions in the middle temporal gyrus of patients. A comparison between the two patient subgroups revealed an increase of grey matter in the middle frontal gyrus in the ATYP group. Voxel-based regression analysis confirmed that grey matter increases in the middle frontal gyrus were correlated with atypical language organization. INTERPRETATION: Compatible with a non-specific lesion effect, we found areas of grey matter reduction in patients as compared to TDC. The grey matter increase in the middle frontal gyrus seems to reflect a specific compensatory effect in patients with atypical language organization. WHAT THIS PAPER ADDS: Perinatal stroke leads to decreased grey matter in the contralesional hemisphere. Atypical language organization is associated with grey matter increases in contralesional language areas.


Asunto(s)
Encéfalo , Sustancia Gris , Humanos , Femenino , Niño , Adolescente , Adulto Joven , Adulto , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Mapeo Encefálico/métodos , Estudios Transversales , Lenguaje , Imagen por Resonancia Magnética/métodos , Infarto , Lateralidad Funcional
18.
Acad Radiol ; 31(1): 180-186, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37280126

RESUMEN

RATIONALE AND OBJECTIVES: Fluid-attenuated inversion recovery (FLAIR) imaging is playing an increasingly significant role in the detection of brain metastases with a concomitant increase in the number of magnetic resonance imaging (MRI) examinations. Therefore, the purpose of this study was to investigate the impact on image quality and diagnostic confidence of an innovative deep learning-based accelerated FLAIR (FLAIRDLR) sequence of the brain compared to conventional (standard) FLAIR (FLAIRS) imaging. MATERIALS AND METHODS: Seventy consecutive patients with staging cerebral MRIs were retrospectively enrolled in this single-center study. The FLAIRDLR was conducted using the same MRI acquisition parameters as the FLAIRS sequence, except for a higher acceleration factor for parallel imaging (from 2 to 4), which resulted in a shorter acquisition time of 1:39 minute instead of 2:40 minutes (-38%). Two specialized neuroradiologists evaluated the imaging datasets using a Likert scale that ranged from 1 to 4, with 4 indicating the best score for the following parameters: sharpness, lesion demarcation, artifacts, overall image quality, and diagnostic confidence. Additionally, the image preference of the readers and the interreader agreement were assessed. RESULTS: The average age of the patients was 63 ± 11years. FLAIRDLR exhibited significantly less image noise than FLAIRS, with P-values of< .001 and< .05, respectively. The sharpness of the images and the ability to detect lesions were rated higher in FLAIRDLR, with a median score of 4 compared to a median score of 3 in FLAIRS (P-values of<.001 for both readers). In terms of overall image quality, FLAIRDLR was rated superior to FLAIRS, with a median score of 4 vs 3 (P-values of<.001 for both readers). Both readers preferred FLAIRDLR in 68/70 cases. CONCLUSION: The feasibility of deep learning FLAIR brain imaging was shown with additional 38% reduction in examination time compared to standard FLAIR imaging. Furthermore, this technique has shown improvement in image quality, noise reduction, and lesion demarcation.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Humanos , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Encefálicas/patología , Artefactos
19.
Clin Neuroradiol ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082172

RESUMEN

PURPOSE: Individuals with drug-resistant epilepsy may benefit from epilepsy surgery. In nonlesional cases, where no epileptogenic lesion can be detected on structural magnetic resonance imaging, multimodal neuroimaging studies are required. Breath-hold-triggered BOLD fMRI (bh-fMRI) was developed to measure cerebrovascular reactivity in stroke or angiopathy and highlights regional network dysfunction by visualizing focal impaired flow increase after vasodilatory stimulus. This regional dysfunction may correlate with the epileptogenic zone. In this prospective single-center single-blind pilot study, we aimed to establish the feasibility and safety of bh-fMRI in individuals with drug-resistant non-lesional focal epilepsy undergoing presurgical evaluation. METHODS: In this prospective study, 10 consecutive individuals undergoing presurgical evaluation for drug-resistant focal epilepsy were recruited after case review at a multidisciplinary patient management conference. Electroclinical findings and results of other neuroimaging were used to establish the epileptogenic zone hypothesis. To calculate significant differences in cerebrovascular reactivity in comparison to the normal population, bh-fMRIs of 16 healthy volunteers were analyzed. The relative flow change of each volume of interest (VOI) of the atlas was then calculated compared to the flow change of the whole brain resulting in an atlas of normal cerebral reactivity. Consequently, the mean flow change of every VOI of each patient was tested against the healthy volunteers group. Areas with significant impairment of cerebrovascular reactivity had decreased flow change and were compared to the epileptogenic zone localization hypothesis in a single-blind design. RESULTS: Acquisition of bh-fMRI was feasible in 9/10 cases, with one patient excluded due to noncompliance with breathing maneuvers. No adverse events were observed, and breath-hold for intermittent hypercapnia was well tolerated. On blinded review, we observed full or partial concordance of the local network dysfunction seen on bh-fMRI with the electroclinical hypothesis in 6/9 cases, including cases with extratemporal lobe epilepsy and those with nonlocalizing 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). CONCLUSION: This represents the first report of bh-fMRI in individuals with epilepsy undergoing presurgical evaluation. We found bh-fMRI to be feasible and safe, with a promising agreement to electroclinical findings. Thus, bh-fMRI may represent a potential modality in the presurgical evaluation of epilepsy. Further studies are needed to establish clinical utility.

20.
Nervenarzt ; 94(12): 1087-1096, 2023 Dec.
Artículo en Alemán | MEDLINE | ID: mdl-37848647

RESUMEN

BACKGROUND: Nerve injuries are a frequent problem in routine clinical practice and require intensive interdisciplinary care. OBJECTIVE: The current status of imaging to confirm the diagnosis of nerve injuries is described. The role of high-resolution ultrasound and magnetic resonance imaging (MRI) in the diagnostics and follow-up of peripheral nerve injuries is elaborated. MATERIAL AND METHODS: Review of the current state of imaging to confirm the diagnosis of nerve injuries. RESULTS: Depending on the suspected site of damage, the primary domain of magnetic resonance (MR) imaging (MR neurography) is injuries in the region of the spine, nerve roots, brachial plexus and lumbar plexus, pelvis and proximal thigh. In contrast, in other peripheral nerve lesions of the extremities the advantages of high-resolution nerve ultrasound in a dynamic setting predominate. The MR neurography is indicated here, especially in the frequent bottleneck syndromes and only in very isolated and selected cases. CONCLUSION: In addition to a correct anatomical assignment, the timely decision for a possible intervention and the appropriate concomitant treatment are an important basis for a favorable prognosis of nerve injuries. Imaging techniques should therefore be used early in the diagnostics and follow-up controls of peripheral nerve injuries.


Asunto(s)
Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ultrasonografía , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA