Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 67(5): 895-907, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38367033

RESUMEN

AIMS/HYPOTHESIS: Physiological gestational diabetes mellitus (GDM) subtypes that may confer different risks for adverse pregnancy outcomes have been defined. The aim of this study was to characterise the metabolome and genetic architecture of GDM subtypes to address the hypothesis that they differ between GDM subtypes. METHODS: This was a cross-sectional study of participants in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study who underwent an OGTT at approximately 28 weeks' gestation. GDM was defined retrospectively using International Association of Diabetes and Pregnancy Study Groups/WHO criteria, and classified as insulin-deficient GDM (insulin secretion <25th percentile with preserved insulin sensitivity) or insulin-resistant GDM (insulin sensitivity <25th percentile with preserved insulin secretion). Metabolomic analyses were performed on fasting and 1 h serum samples in 3463 individuals (576 with GDM). Genome-wide genotype data were obtained for 8067 individuals (1323 with GDM). RESULTS: Regression analyses demonstrated striking differences between the metabolomes for insulin-deficient or insulin-resistant GDM compared to those with normal glucose tolerance. After adjustment for covariates, 33 fasting metabolites, including 22 medium- and long-chain acylcarnitines, were uniquely associated with insulin-deficient GDM; 23 metabolites, including the branched-chain amino acids and their metabolites, were uniquely associated with insulin-resistant GDM; two metabolites (glycerol and 2-hydroxybutyrate) were associated with the same direction of association with both subtypes. Subtype differences were also observed 1 h after a glucose load. In genome-wide association studies, variants within MTNR1B (rs10830963, p=3.43×10-18, OR 1.55) and GCKR (rs1260326, p=5.17×10-13, OR 1.43) were associated with GDM. Variants in GCKR (rs1260326, p=1.36×10-13, OR 1.60) and MTNR1B (rs10830963, p=1.22×10-9, OR 1.49) demonstrated genome-wide significant association with insulin-resistant GDM; there were no significant associations with insulin-deficient GDM. The lead SNP in GCKR, rs1260326, was associated with the levels of eight of the 25 fasting metabolites that were associated with insulin-resistant GDM and ten of 41 1 h metabolites that were associated with insulin-resistant GDM. CONCLUSIONS/INTERPRETATION: This study demonstrates that physiological GDM subtypes differ in their metabolome and genetic architecture. These findings require replication in additional cohorts, but suggest that these differences may contribute to subtype-related adverse pregnancy outcomes.


Asunto(s)
Diabetes Gestacional , Hiperglucemia , Resistencia a la Insulina , Femenino , Embarazo , Humanos , Glucemia/metabolismo , Resistencia a la Insulina/genética , Resultado del Embarazo , Prueba de Tolerancia a la Glucosa , Estudio de Asociación del Genoma Completo , Estudios Transversales , Estudios Retrospectivos , Insulina/metabolismo , Glucosa/metabolismo
2.
BMC Med ; 22(1): 32, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281920

RESUMEN

BACKGROUND: Higher maternal pre-pregnancy body mass index (BMI) is associated with adverse pregnancy and perinatal outcomes. However, whether these associations are causal remains unclear. METHODS: We explored the relation of maternal pre-/early-pregnancy BMI with 20 pregnancy and perinatal outcomes by integrating evidence from three different approaches (i.e. multivariable regression, Mendelian randomisation, and paternal negative control analyses), including data from over 400,000 women. RESULTS: All three analytical approaches supported associations of higher maternal BMI with lower odds of maternal anaemia, delivering a small-for-gestational-age baby and initiating breastfeeding, but higher odds of hypertensive disorders of pregnancy, gestational hypertension, preeclampsia, gestational diabetes, pre-labour membrane rupture, induction of labour, caesarean section, large-for-gestational age, high birthweight, low Apgar score at 1 min, and neonatal intensive care unit admission. For example, higher maternal BMI was associated with higher risk of gestational hypertension in multivariable regression (OR = 1.67; 95% CI = 1.63, 1.70 per standard unit in BMI) and Mendelian randomisation (OR = 1.59; 95% CI = 1.38, 1.83), which was not seen for paternal BMI (OR = 1.01; 95% CI = 0.98, 1.04). Findings did not support a relation between maternal BMI and perinatal depression. For other outcomes, evidence was inconclusive due to inconsistencies across the applied approaches or substantial imprecision in effect estimates from Mendelian randomisation. CONCLUSIONS: Our findings support a causal role for maternal pre-/early-pregnancy BMI on 14 out of 20 adverse pregnancy and perinatal outcomes. Pre-conception interventions to support women maintaining a healthy BMI may reduce the burden of obstetric and neonatal complications. FUNDING: Medical Research Council, British Heart Foundation, European Research Council, National Institutes of Health, National Institute for Health Research, Research Council of Norway, Wellcome Trust.


Asunto(s)
Diabetes Gestacional , Hipertensión Inducida en el Embarazo , Preeclampsia , Femenino , Humanos , Recién Nacido , Embarazo , Índice de Masa Corporal , Cesárea , Hipertensión Inducida en el Embarazo/epidemiología , Preeclampsia/epidemiología , Análisis de la Aleatorización Mendeliana
4.
Sci Rep ; 13(1): 18532, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898691

RESUMEN

Clostridioides difficile (C. diff.) infection (CDI) is a leading cause of hospital acquired diarrhea in North America and Europe and a major cause of morbidity and mortality. Known risk factors do not fully explain CDI susceptibility, and genetic susceptibility is suggested by the fact that some patients with colons that are colonized with C. diff. do not develop any infection while others develop severe or recurrent infections. To identify common genetic variants associated with CDI, we performed a genome-wide association analysis in 19,861 participants (1349 cases; 18,512 controls) from the Electronic Medical Records and Genomics (eMERGE) Network. Using logistic regression, we found strong evidence for genetic variation in the DRB locus of the MHC (HLA) II region that predisposes individuals to CDI (P > 1.0 × 10-14; OR 1.56). Altered transcriptional regulation in the HLA region may play a role in conferring susceptibility to this opportunistic enteric pathogen.


Asunto(s)
Infecciones por Clostridium , Estudio de Asociación del Genoma Completo , Humanos , Infecciones por Clostridium/genética , Diarrea , Antígenos de Histocompatibilidad , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase II , Variación Genética
5.
PLoS One ; 18(5): e0283553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37196047

RESUMEN

OBJECTIVE: Diverticular disease (DD) is one of the most prevalent conditions encountered by gastroenterologists, affecting ~50% of Americans before the age of 60. Our aim was to identify genetic risk variants and clinical phenotypes associated with DD, leveraging multiple electronic health record (EHR) data sources of 91,166 multi-ancestry participants with a Natural Language Processing (NLP) technique. MATERIALS AND METHODS: We developed a NLP-enriched phenotyping algorithm that incorporated colonoscopy or abdominal imaging reports to identify patients with diverticulosis and diverticulitis from multicenter EHRs. We performed genome-wide association studies (GWAS) of DD in European, African and multi-ancestry participants, followed by phenome-wide association studies (PheWAS) of the risk variants to identify their potential comorbid/pleiotropic effects in clinical phenotypes. RESULTS: Our developed algorithm showed a significant improvement in patient classification performance for DD analysis (algorithm PPVs ≥ 0.94), with up to a 3.5 fold increase in terms of the number of identified patients than the traditional method. Ancestry-stratified analyses of diverticulosis and diverticulitis of the identified subjects replicated the well-established associations between ARHGAP15 loci with DD, showing overall intensified GWAS signals in diverticulitis patients compared to diverticulosis patients. Our PheWAS analyses identified significant associations between the DD GWAS variants and circulatory system, genitourinary, and neoplastic EHR phenotypes. DISCUSSION: As the first multi-ancestry GWAS-PheWAS study, we showcased that heterogenous EHR data can be mapped through an integrative analytical pipeline and reveal significant genotype-phenotype associations with clinical interpretation. CONCLUSION: A systematic framework to process unstructured EHR data with NLP could advance a deep and scalable phenotyping for better patient identification and facilitate etiological investigation of a disease with multilayered data.


Asunto(s)
Enfermedades Diverticulares , Diverticulitis , Divertículo , Humanos , Registros Electrónicos de Salud , Estudio de Asociación del Genoma Completo/métodos , Procesamiento de Lenguaje Natural , Fenotipo , Algoritmos , Polimorfismo de Nucleótido Simple
6.
medRxiv ; 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36824881

RESUMEN

Background: Preeclampsia, a pregnancy complication characterized by hypertension after 20 gestational weeks, is a major cause of maternal and neonatal morbidity and mortality. The mechanisms leading to preeclampsia are unclear; however, there is evidence that preeclampsia is highly heritable. We evaluated the association of polygenic risk scores (PRS) for blood pressure traits and preeclampsia to assess whether there is shared genetic architecture. Methods: Participants were obtained from Vanderbilt University's BioVU, the Electronic Medical Records and Genomics network, and the Penn Medicine Biobank. Non-Hispanic Black and White females of reproductive age with indications of pregnancy and genotype information were included. Preeclampsia was defined by ICD codes. Summary statistics for diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) PRS were obtained from Giri et al 2019. Associations between preeclampsia and each PRS were evaluated separately by race and study population before evidence was meta-analyzed. Prediction models were developed and evaluated using 10-fold cross validation. Results: In the 3,504 Black and 5,009 White individuals included, the rate of preeclampsia was 15.49%. The DBP and SBP PRSs were associated with preeclampsia in Whites but not Blacks. The PP PRS was significantly associated with preeclampsia in Blacks and Whites. In trans-ancestry meta-analysis, all PRSs were associated with preeclampsia (OR DBP =1.10, 95% CI=1.02-1.17, p =7.68×10 -3 ; OR SBP =1.16, 95% CI=1.09-1.23, p =2.23×10 -6 ; OR PP =1.14, 95% CI=1.07-1.27, p =9.86×10 -5 ). However, addition of PRSs to clinical prediction models did not improve predictive performance. Conclusions: Genetic factors contributing to blood pressure regulation in the general population also predispose to preeclampsia.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36509832

RESUMEN

BACKGROUND: Variations in dietary intake and environmental exposure patterns of essential and non-essential trace metals influence many aspects of human health throughout the life span. OBJECTIVE: To examine the relationship between urine profiles of essential and non-essential metals in mother-offspring pairs and their association with early dysglycemia. METHODS: Herein, we report findings from an ancillary study to the international Hyperglycemia and Adverse Pregnancy Outcome Follow-Up Study (HAPO-FUS) that examined urinary essential and non-essential metal profiles from mothers and offspring ages 10-14 years (1012 mothers, 1013 offspring, 968 matched pairs) from 10 international sites. RESULTS: Our analysis demonstrated a diverse exposure pattern across participating sites. In multiple regression modelling, a positive association between markers of early dysglycemia and urinary zinc was found in both mothers and offspring after adjustment for common risk factors for diabetes. The analysis showed weaker, positive, and negative associations of the 2-h glucose value with urinary selenium and arsenic respectively. A positive association between 2-h glucose values and cadmium was found only in mothers in the fully adjusted model when participants with established diabetes were excluded. There was a high degree of concordance between mother and offspring urinary metal profiles. Mother-to-offspring urinary metal ratios were unique for each metal, providing insights into changes in their homeostasis across the lifespan. SIGNIFICANCE: Urinary levels of essential and non-essential metals are closely correlated between mothers and their offspring in an international cohort. Urinary levels of zinc, selenium, arsenic, and cadmium showed varying degrees of association with early dysglycemia in a comparatively healthy cohort with a low rate of preexisting diabetes. IMPACT STATEMENT: Our data provides novel evidence for a strong correlation between mother and offspring urinary metal patterns with a unique mother-to-offspring ratio for each metal. The study also provides new evidence for a strong positive association between early dysglycemia and urinary zinc, both in mothers and offspring. Weaker positive associations with urinary selenium and cadmium and negative associations with arsenic were also found. The low rate of preexisting diabetes in this population provides the unique advantage of minimizing the confounding effect of preexisting, diabetes related renal changes that would alter the relationship between dysglycemia and renal metal excretion.

8.
Obesity (Silver Spring) ; 30(12): 2477-2488, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36372681

RESUMEN

OBJECTIVE: High BMI is associated with many comorbidities and mortality. This study aimed to elucidate the overall clinical risk of obesity using a genome- and phenome-wide approach. METHODS: This study performed a phenome-wide association study of BMI using a clinical cohort of 736,726 adults. This was followed by genetic association studies using two separate cohorts: one consisting of 65,174 adults in the Electronic Medical Records and Genomics (eMERGE) Network and another with 405,432 participants in the UK Biobank. RESULTS: Class 3 obesity was associated with 433 phenotypes, representing 59.3% of all billing codes in individuals with severe obesity. A genome-wide polygenic risk score for BMI, accounting for 7.5% of variance in BMI, was associated with 296 clinical diseases, including strong associations with type 2 diabetes, sleep apnea, hypertension, and chronic liver disease. In all three cohorts, 199 phenotypes were associated with class 3 obesity and polygenic risk for obesity, including novel associations such as increased risk of renal failure, venous insufficiency, and gastroesophageal reflux. CONCLUSIONS: This combined genomic and phenomic systematic approach demonstrated that obesity has a strong genetic predisposition and is associated with a considerable burden of disease across all disease classes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fenómica , Humanos , Registros Electrónicos de Salud , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleótido Simple , Genómica , Predisposición Genética a la Enfermedad , Obesidad/epidemiología , Obesidad/genética , Fenotipo , Costo de Enfermedad
9.
Genes (Basel) ; 13(8)2022 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893057

RESUMEN

The genetic protective factors for cognitive decline in aging remain unknown. Predicting an individual's rate of cognitive decline-or with better cognitive resilience-using genetics will allow personalized intervention for cognitive enhancement and the optimal selection of target samples in clinical trials. Here, using genome-wide polygenic scores (GPS) of cognitive capacity as the genomic indicators for variations of human intelligence, we analyzed the 18-year records of cognitive and behavioral data of 8511 European-ancestry adults from the Wisconsin Longitudinal Study (WLS), specifically focusing on the cognitive assessments that were repeatedly administered to the participants with their average ages of 64.5 and 71.5. We identified a significant interaction effect between age and cognitive capacity GPS, which indicated that a higher cognitive capacity GPS significantly correlated with a slower cognitive decline in the domain of immediate memory recall (ß = 1.86 × 10-1, p-value = 1.79 × 10-3). The additional phenome-wide analyses identified several associations between cognitive capacity GPSs and cognitive/behavioral phenotypes, such as similarities task (ß = 1.36, 95% CI = (1.22, 1.51), p-value = 3.59 × 10-74), number series task (ß = 0.94, 95% CI = (0.85, 1.04), p-value = 2.55 × 10-78), IQ scores (ß = 1.42, 95% CI = (1.32, 1.51), p-value = 7.74 × 10-179), high school classrank (ß = 1.86, 95% CI = (1.69, 2.02), p-value = 3.07 × 10-101), Openness from the BIG 5 personality factor (p-value = 2.19 × 10-14, ß = 0.57, 95% CI = (0.42, 0.71)), and leisure activity of reading books (ß = 0.50, 95% CI = (0.40, 0.60), p-value = 2.03 × 10-21), attending cultural events, such as concerts, plays, or museums (ß = 0.60, 95% CI = (0.49, 0.72), p-value = 2.06 × 10-23), and watching TV (ß = -0.48, 95% CI = (-0.59, -0.37), p-value = 4.16 × 10-18). As the first phenome-wide analysis of cognitive and behavioral phenotypes, this study presents the novel genetic protective effects of cognitive ability on the decline of memory recall in an aging population.


Asunto(s)
Disfunción Cognitiva , Herencia Multifactorial , Adulto , Anciano , Envejecimiento/genética , Cognición , Disfunción Cognitiva/genética , Humanos , Estudios Longitudinales , Herencia Multifactorial/genética
10.
Metabolites ; 12(6)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35736446

RESUMEN

The integration of genetics and metabolomics data demands careful accounting of complex dependencies, particularly when modelling familial omics data, e.g., to study fetal programming of related maternal-offspring phenotypes. Efforts to identify genetically determined metabotypes using classic genome wide association approaches have proven useful for characterizing complex disease, but conclusions are often limited to a series of variant-metabolite associations. We adapt Bayesian network models to integrate metabotypes with maternal-offspring genetic dependencies and metabolic profile correlations in order to investigate mechanisms underlying maternal-offspring phenotypic associations. Using data from the multiethnic Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study, we demonstrate that the strategic specification of ordered dependencies, pre-filtering of candidate metabotypes, incorporation of metabolite dependencies, and penalized network estimation methods clarify potential mechanisms for fetal programming of newborn adiposity and metabolic outcomes. The exploration of Bayesian network growth over a range of penalty parameters, coupled with interactive plotting, facilitate the interpretation of network edges. These methods are broadly applicable to integration of diverse omics data for related individuals.

11.
Diabetologia ; 63(9): 1783-1795, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32556615

RESUMEN

AIMS/HYPOTHESIS: Our study aimed to integrate maternal metabolic and genetic data related to insulin sensitivity during pregnancy to provide novel insights into mechanisms underlying pregnancy-induced insulin resistance. METHODS: Fasting and 1 h serum samples were collected from women in the Hyperglycemia and Adverse Pregnancy Outcome study who underwent an OGTT at ∼28 weeks' gestation. We obtained targeted and non-targeted metabolomics and genome-wide association data from 1600 and 4528 mothers, respectively, in four ancestry groups (Northern European, Afro-Caribbean, Mexican American and Thai); 1412 of the women had both metabolomics and genome-wide association data. Insulin sensitivity was calculated using a modified insulin sensitivity index that included fasting and 1 h glucose and C-peptide levels after a 75 g glucose load. RESULTS: Per-metabolite and network analyses across the four ancestries identified numerous metabolites associated with maternal insulin sensitivity before and 1 h after a glucose load, ranging from amino acids and carbohydrates to fatty acids and lipids. Genome-wide association analyses identified 12 genetic variants in the glucokinase regulatory protein gene locus that were significantly associated with maternal insulin sensitivity, including a common functional missense mutation, rs1260326 (ß = -0.2004, p = 4.67 × 10-12 in a meta-analysis across the four ancestries). This SNP was also significantly associated with multiple fasting and 1 h metabolites during pregnancy, including fasting and 1 h triacylglycerols and 2-hydroxybutyrate and 1 h lactate, 2-ketoleucine/ketoisoleucine and palmitoleic acid. Mediation analysis suggested that 1 h palmitoleic acid contributes, in part, to the association of rs1260326 with maternal insulin sensitivity, explaining 13.7% (95% CI 4.0%, 23.3%) of the total effect. CONCLUSIONS/INTERPRETATION: The present study demonstrates commonalities between metabolites and genetic variants associated with insulin sensitivity in the gravid and non-gravid states and provides insights into mechanisms underlying pregnancy-induced insulin resistance. Graphical abstract.


Asunto(s)
Resistencia a la Insulina/genética , Metabolómica , Embarazo/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Pueblo Asiatico , Población Negra , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina/fisiología , Análisis de Mediación , Americanos Mexicanos , Mutación Missense , Polimorfismo de Nucleótido Simple , Embarazo/metabolismo , Población Blanca , Adulto Joven
12.
PLoS Med ; 17(6): e1003132, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32574161

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common, complex genetic disorder affecting up to 15% of reproductive-age women worldwide, depending on the diagnostic criteria applied. These diagnostic criteria are based on expert opinion and have been the subject of considerable controversy. The phenotypic variation observed in PCOS is suggestive of an underlying genetic heterogeneity, but a recent meta-analysis of European ancestry PCOS cases found that the genetic architecture of PCOS defined by different diagnostic criteria was generally similar, suggesting that the criteria do not identify biologically distinct disease subtypes. We performed this study to test the hypothesis that there are biologically relevant subtypes of PCOS. METHODS AND FINDINGS: Using biochemical and genotype data from a previously published PCOS genome-wide association study (GWAS), we investigated whether there were reproducible phenotypic subtypes of PCOS with subtype-specific genetic associations. Unsupervised hierarchical cluster analysis was performed on quantitative anthropometric, reproductive, and metabolic traits in a genotyped cohort of 893 PCOS cases (median and interquartile range [IQR]: age = 28 [25-32], body mass index [BMI] = 35.4 [28.2-41.5]). The clusters were replicated in an independent, ungenotyped cohort of 263 PCOS cases (median and IQR: age = 28 [24-33], BMI = 35.7 [28.4-42.3]). The clustering revealed 2 distinct PCOS subtypes: a "reproductive" group (21%-23%), characterized by higher luteinizing hormone (LH) and sex hormone binding globulin (SHBG) levels with relatively low BMI and insulin levels, and a "metabolic" group (37%-39%), characterized by higher BMI, glucose, and insulin levels with lower SHBG and LH levels. We performed a GWAS on the genotyped cohort, limiting the cases to either the reproductive or metabolic subtypes. We identified alleles in 4 loci that were associated with the reproductive subtype at genome-wide significance (PRDM2/KAZN, P = 2.2 × 10-10; IQCA1, P = 2.8 × 10-9; BMPR1B/UNC5C, P = 9.7 × 10-9; CDH10, P = 1.2 × 10-8) and one locus that was significantly associated with the metabolic subtype (KCNH7/FIGN, P = 1.0 × 10-8). We developed a predictive model to classify a separate, family-based cohort of 73 women with PCOS (median and IQR: age = 28 [25-33], BMI = 34.3 [27.8-42.3]) and found that the subtypes tended to cluster in families and that carriers of previously reported rare variants in DENND1A, a gene that regulates androgen biosynthesis, were significantly more likely to have the reproductive subtype of PCOS. Limitations of our study were that only PCOS cases of European ancestry diagnosed by National Institutes of Health (NIH) criteria were included, the sample sizes for the subtype GWAS were small, and the GWAS findings were not replicated. CONCLUSIONS: In conclusion, we have found reproducible reproductive and metabolic subtypes of PCOS. Furthermore, these subtypes were associated with novel, to our knowledge, susceptibility loci. Our results suggest that these subtypes are biologically relevant because they appear to have distinct genetic architecture. This study demonstrates how phenotypic subtyping can be used to gain additional insights from GWAS data.


Asunto(s)
Síndrome del Ovario Poliquístico/genética , Adulto , Análisis por Conglomerados , Femenino , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Síndrome del Ovario Poliquístico/clasificación , Síndrome del Ovario Poliquístico/patología
14.
J Clin Endocrinol Metab ; 105(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917831

RESUMEN

CONTEXT: As many as 75% of patients with polycystic ovary syndrome (PCOS) are estimated to be unidentified in clinical practice. OBJECTIVE: Utilizing polygenic risk prediction, we aim to identify the phenome-wide comorbidity patterns characteristic of PCOS to improve accurate diagnosis and preventive treatment. DESIGN, PATIENTS, AND METHODS: Leveraging the electronic health records (EHRs) of 124 852 individuals, we developed a PCOS risk prediction algorithm by combining polygenic risk scores (PRS) with PCOS component phenotypes into a polygenic and phenotypic risk score (PPRS). We evaluated its predictive capability across different ancestries and perform a PRS-based phenome-wide association study (PheWAS) to assess the phenomic expression of the heightened risk of PCOS. RESULTS: The integrated polygenic prediction improved the average performance (pseudo-R2) for PCOS detection by 0.228 (61.5-fold), 0.224 (58.8-fold), 0.211 (57.0-fold) over the null model across European, African, and multi-ancestry participants respectively. The subsequent PRS-powered PheWAS identified a high level of shared biology between PCOS and a range of metabolic and endocrine outcomes, especially with obesity and diabetes: "morbid obesity", "type 2 diabetes", "hypercholesterolemia", "disorders of lipid metabolism", "hypertension", and "sleep apnea" reaching phenome-wide significance. CONCLUSIONS: Our study has expanded the methodological utility of PRS in patient stratification and risk prediction, especially in a multifactorial condition like PCOS, across different genetic origins. By utilizing the individual genome-phenome data available from the EHR, our approach also demonstrates that polygenic prediction by PRS can provide valuable opportunities to discover the pleiotropic phenomic network associated with PCOS pathogenesis.


Asunto(s)
Algoritmos , Estudio de Asociación del Genoma Completo , Herencia Multifactorial/genética , Fenómica/métodos , Fenotipo , Síndrome del Ovario Poliquístico/diagnóstico , Adolescente , Anciano , Estudios de Casos y Controles , Niño , Registros Electrónicos de Salud , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Síndrome del Ovario Poliquístico/epidemiología , Síndrome del Ovario Poliquístico/genética , Pronóstico , Factores de Riesgo
15.
Wellcome Open Res ; 5: 175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33869792

RESUMEN

Background: Using genetic scores for fasting plasma glucose (FPG GS) and type 2 diabetes (T2D GS), we investigated whether the fasting, 1-hour and 2-hour glucose thresholds from the WHO 2013 criteria for gestational diabetes (GDM) have different implications for genetic susceptibility to raised fasting glucose and type 2 diabetes in women from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) and Atlantic Diabetes in Pregnancy (DIP) studies. Methods: Cases were divided into three subgroups: (i) FPG ≥5.1 mmol/L only, n=222; (ii) 1-hour glucose post 75 g oral glucose load ≥10 mmol/L only, n=154 (iii) 2-hour glucose ≥8.5 mmol/L only, n=73; and (iv) both FPG ≥5.1 mmol/L and either of a 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, n=172. We compared the FPG and T2D GS of these groups with controls (n=3,091) in HAPO and DIP separately. Results: In HAPO and DIP, the mean FPG GS in women with a FPG ≥5.1 mmol/L, either on its own or with 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, was higher than controls (all P <0.01). Mean T2D GS in women with a raised FPG alone or with either a raised 1-hour or 2-hour glucose was higher than controls (all P <0.05). GDM defined by 1-hour or 2-hour hyperglycaemia only was also associated with a higher T2D GS than controls (all P <0.05). Conclusions: The different diagnostic categories that are part of the WHO 2013 criteria for GDM identify women with a genetic predisposition to type 2 diabetes as well as a risk for adverse pregnancy outcomes.

16.
Bioinformatics ; 36(2): 331-338, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31368479

RESUMEN

MOTIVATION: High-throughput reporter assays dramatically improve our ability to assign function to noncoding genetic variants, by measuring allelic effects on gene expression in the controlled setting of a reporter gene. Unlike genetic association tests, such assays are not confounded by linkage disequilibrium when loci are independently assayed. These methods can thus improve the identification of causal disease mutations. While work continues on improving experimental aspects of these assays, less effort has gone into developing methods for assessing the statistical significance of assay results, particularly in the case of rare variants captured from patient DNA. RESULTS: We describe a Bayesian hierarchical model, called Bayesian Inference of Regulatory Differences, which integrates prior information and explicitly accounts for variability between experimental replicates. The model produces substantially more accurate predictions than existing methods when allele frequencies are low, which is of clear advantage in the search for disease-causing variants in DNA captured from patient cohorts. Using the model, we demonstrate a clear tradeoff between variant sequencing coverage and numbers of biological replicates, and we show that the use of additional biological replicates decreases variance in estimates of effect size, due to the properties of the Poisson-binomial distribution. We also provide a power and sample size calculator, which facilitates decision making in experimental design parameters. AVAILABILITY AND IMPLEMENTATION: The software is freely available from www.geneprediction.org/bird. The experimental design web tool can be accessed at http://67.159.92.22:8080. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Alelos , Teorema de Bayes , Frecuencia de los Genes , Humanos , Desequilibrio de Ligamiento
17.
Am J Phys Anthropol ; 171(3): 520-528, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31845317

RESUMEN

OBJECTIVES: Telomeres, emerging biomarkers of aging, are comprised of DNA repeats located at chromosomal ends that shorten with cellular replication and age in most human tissues. In contrast, spermatocyte telomeres lengthen with age. These changes in telomere length (TL) appear to be heritable, as older paternal ages of conception (PAC) predict longer offspring TL. Mouse-model studies raise questions about the potential for effects of paternal experiences on human offspring TL, as they suggest that smoking, inflammation, DNA damage, and stressors all shorten sperm TL. Here, we examined whether factors from the paternal environment predict offspring TL as well as interact with PAC to predict offspring TL. MATERIALS AND METHODS: Using data from the Philippines, we tested if smoking, psychosocial stressors, or shorter knee height (a measure of early life adversity) predict shorter offspring TL. We also tested if these interacted with PAC in predicting offspring TL. RESULTS: While we did not find the predicted associations, we observed a trend toward fathers with shorter knee height having offspring with longer TL. In addition, we found that knee height interacted with PAC to predict offspring TL. Specifically, fathers with shorter knee heights showed a stronger positive effect of PAC on offspring TL. DISCUSSION: While the reasons for these associations remain uncertain, shorter knee height is characteristic of earlier puberty. Since spermatocyte TL increases with the production of sperm, we speculate that individuals with earlier puberty, and its concomitant commencement of production of sperm, had more time to accumulate longer sperm telomeres.


Asunto(s)
Estatura , Herencia Paterna , Fumar/efectos adversos , Estrés Psicológico/psicología , Homeostasis del Telómero/genética , Acortamiento del Telómero/genética , Adulto , Femenino , Humanos , Estudios Longitudinales , Masculino , Filipinas , Adulto Joven
18.
World J Surg ; 44(1): 84-94, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605180

RESUMEN

BACKGROUND: The extent to which obesity and genetics determine postoperative complications is incompletely understood. METHODS: We performed a retrospective study using two population cohorts with electronic health record (EHR) data. The first included 736,726 adults with body mass index (BMI) recorded between 1990 and 2017 at Vanderbilt University Medical Center. The second cohort consisted of 65,174 individuals from 12 institutions contributing EHR and genome-wide genotyping data to the Electronic Medical Records and Genomics (eMERGE) Network. Pairwise logistic regression analyses were used to measure the association of BMI categories with postoperative complications derived from International Classification of Disease-9 codes, including postoperative infection, incisional hernia, and intestinal obstruction. A genetic risk score was constructed from 97 obesity-risk single-nucleotide polymorphisms for a Mendelian randomization study to determine the association of genetic risk of obesity on postoperative complications. Logistic regression analyses were adjusted for sex, age, site, and race/principal components. RESULTS: Individuals with overweight or obese BMI (≥25 kg/m2) had increased risk of incisional hernia (odds ratio [OR] 1.7-5.5, p < 3.1 × 10-20), and people with obesity (BMI ≥ 30 kg/m2) had increased risk of postoperative infection (OR 1.2-2.3, p < 2.5 × 10-5). In the eMERGE cohort, genetically predicted BMI was associated with incisional hernia (OR 2.1 [95% CI 1.8-2.5], p = 1.4 × 10-6) and postoperative infection (OR 1.6 [95% CI 1.4-1.9], p = 3.1 × 10-6). Association findings were similar after limitation of the cohorts to those who underwent abdominal procedures. CONCLUSIONS: Clinical and Mendelian randomization studies suggest that obesity, as measured by BMI, is associated with the development of postoperative incisional hernia and infection.


Asunto(s)
Análisis de la Aleatorización Mendeliana/métodos , Obesidad/complicaciones , Complicaciones Posoperatorias/genética , Adulto , Índice de Masa Corporal , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Factores de Riesgo
19.
Obesity (Silver Spring) ; 28(1): 106-113, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31729166

RESUMEN

OBJECTIVE: Women with metabolic syndrome (MetS) have higher endogenous testosterone (T) levels than unaffected women. This study investigated whether hyperandrogenemia (HA) was a marker for increased cardiometabolic risk in reproductively normal premenopausal women. METHODS: Reproductive hormones and metabolic parameters were assessed in 198 women with regular menses and no clinical hyperandrogenism (eumenorrheic [EM]). Hyperandrogenic EM women were compared with 110 women with NIH criteria polycystic ovary syndrome. RESULTS: Twenty-two percent of EM women had HA. Levels of non-sex hormone-binding globulin (SHBG)-bound T were elevated in 68% of women, total T levels were elevated in 43% of women, and dehydroepiandrosterone sulfate levels were elevated in 30% of women. The prevalence of HA increased with BMI category (P = 0.01): 12% for BMI < 25 kg/m2 , 22% for BMI of 25 to 30 kg/m2 , and 31% for BMI ≥ 30 kg/m2 . MetS (adjusted odds ratio 2.9; 95% CI: 1.2-6.9) and dysglycemia risks (adjusted odds ratio 2.7; 95% CI: 1.2-5.8) were increased in hyperandrogenic EM women compared with normoandrogenic EM women, with adjustment for BMI. SHBG levels were independently associated with these metabolic end points (P < 0.001), whereas androgen levels were not. A cluster analysis confirmed that there was a discrete subset of EM women with HA and metabolic abnormalities. CONCLUSIONS: HA is common in EM women and is associated with increased risks for MetS and dysglycemia. However, low SHBG levels rather than elevated androgen levels may be the primary predictor of this relationship with metabolic dysfunction.


Asunto(s)
Hiperandrogenismo/complicaciones , Síndrome Metabólico/etiología , Adolescente , Adulto , Estudios Transversales , Femenino , Humanos , Hiperandrogenismo/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA