RESUMEN
In eukaryotes, RNA N6-methyladenosine (m6A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid-liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)-SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid-liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
RESUMEN
Polyploid hybrid rice (Oryza sativa) has great potential for increasing yields. However, hybrid rice depends on male fertility and its regulation, which is less well studied in polyploid rice than in diploid rice. We previously identified an MYB transcription factor, MORE FLORET1 (MOF1), whose mutation causes male sterility in neo-tetraploid rice. MOF1 expression in anthers peaks at anther Stage 7 (S7) and progressively decreases to low levels at S10. However, it remains unclear how the dynamics of MOF1 expression contribute to male fertility. Here, we carefully examined anther development in both diploid and tetraploid mof1 rice mutants, as well as lines ectopically expressing MOF1 in a temporal manner. MOF1 mutations caused delayed degeneration of the tapetum and middle layer of anthers and aberrant pollen wall organization. Ectopic MOF1 expression at later stages of anther development led to retarded cytoplasmic reorganization of tapetal cells. In both cases, pollen grains were aborted and seed production was abolished, indicating that precise control of MOF1 expression is essential for male reproduction. We demonstrated that 5 key tapetal genes, CYP703A3 (CYTOCHROME P450 HYDROXYLASE 703A3), OsABCG26 (O. sativa ATP BINDING CASSETTE G26), PTC1 (PERSISTENT TAPETAL CELL1), PKS2 (POLYKETIDE SYNTHASE 2), and OsABCG15 (O. sativa ATP BINDING CASSETTE G15), exhibit expression patterns opposite to those of MOF1 and are negatively regulated by MOF1. Moreover, DNA affinity purification sequencing (DAP-seq), luciferase activity assays, and electrophoretic mobility shift assays indicated that MOF1 binds directly to the PKS2 promoter for transcriptional repression. Our results provide a mechanistic basis for the regulation of male reproduction by MOF1 in both diploid and tetraploid rice. This study will facilitate the development of polyploid male sterile lines, which are useful for breeding of polyploid hybrid rice.
Asunto(s)
Diploidia , Flores , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Polen , Tetraploidía , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Polen/genética , Polen/crecimiento & desarrollo , Mutación/genética , Genes de Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
In the eukaryotic nucleus, heterochromatin forms highly condensed, visible foci known as heterochromatin foci (HF). These HF are enriched with linker histone H1, a key player in heterochromatin condensation and silencing. However, it is unknown how H1 aggregates HF and condenses heterochromatin. In this study, we established that H1 facilitates heterochromatin condensation by enhancing inter- and intrachromosomal interactions between and within heterochromatic regions of the Arabidopsis (Arabidopsis thaliana) genome. We demonstrated that H1 drives HF formation via phase separation, which requires its C-terminal intrinsically disordered region (C-IDR). A truncated H1 lacking the C-IDR fails to form foci or recover HF in the h1 mutant background, whereas C-IDR with a short stretch of the globular domain (18 out of 71 amino acids) is sufficient to rescue both defects. In addition, C-IDR is essential for H1's roles in regulating nucleosome repeat length and DNA methylation in Arabidopsis, indicating that phase separation capability is required for chromatin functions of H1. Our data suggest that bacterial H1-like proteins, which have been shown to condense DNA, are intrinsically disordered and capable of mediating phase separation. Therefore, we propose that phase separation mediated by H1 or H1-like proteins may represent an ancient mechanism for condensing chromatin and DNA.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Heterocromatina , Histonas , Arabidopsis/genética , Arabidopsis/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metilación de ADN/genética , Nucleosomas/metabolismo , Separación de FasesRESUMEN
Transcription is a core step in gene expression. Regulation of transcription is achieved at the level of transcription machinery, local chromatin environment as well as higher-order chromatin organization. Our understanding of transcriptional regulation was advanced by recent introduction of transcription and chromatin-associated condensates, which typically arise via phase separation of proteins and nucleic acids. While studies from mammalian cells are unveiling the mechanisms of phase separation in transcription regulation, those in plants further broaden and deepen our understanding of this process. In this review, we discuss recent progress in plants how phase separation operates in RNA-mediated chromatin silencing, transcription activity, and chromatin compartmentalization.
Asunto(s)
Cromatina , Plantas , Animales , Cromatina/genética , Plantas/genética , Ensamble y Desensamble de Cromatina , Mamíferos/genéticaRESUMEN
Cytosine methylation within CG dinucleotides (mCG) can be epigenetically inherited over many generations. Such inheritance is thought to be mediated by a semiconservative mechanism that produces binary present/absent methylation patterns. However, we show here that, in Arabidopsis thaliana h1ddm1 mutants, intermediate heterochromatic mCG is stably inherited across many generations and is quantitatively associated with transposon expression. We develop a mathematical model that estimates the rates of semiconservative maintenance failure and de novo methylation at each transposon, demonstrating that mCG can be stably inherited at any level via a dynamic balance of these activities. We find that DRM2-the core methyltransferase of the RNA-directed DNA methylation pathway-catalyzes most of the heterochromatic de novo mCG, with de novo rates orders of magnitude higher than previously thought, whereas chromomethylases make smaller contributions. Our results demonstrate that stable epigenetic inheritance of mCG in plant heterochromatin is enabled by extensive de novo methylation.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Metilación de ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica de las PlantasRESUMEN
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Animales , Metilación de ADN/genética , Células Germinativas/metabolismo , ReproducciónRESUMEN
Sperm chromatin is typically transformed by protamines into a compact and transcriptionally inactive state1,2. Sperm cells of flowering plants lack protamines, yet they have small, transcriptionally active nuclei with chromatin condensed through an unknown mechanism3,4. Here we show that a histone variant, H2B.8, mediates sperm chromatin and nuclear condensation in Arabidopsis thaliana. Loss of H2B.8 causes enlarged sperm nuclei with dispersed chromatin, whereas ectopic expression in somatic cells produces smaller nuclei with aggregated chromatin. This result demonstrates that H2B.8 is sufficient for chromatin condensation. H2B.8 aggregates transcriptionally inactive AT-rich chromatin into phase-separated condensates, which facilitates nuclear compaction without reducing transcription. Reciprocal crosses show that mutation of h2b.8 reduces male transmission, which suggests that H2B.8-mediated sperm compaction is important for fertility. Altogether, our results reveal a new mechanism of nuclear compaction through global aggregation of unexpressed chromatin. We propose that H2B.8 is an evolutionary innovation of flowering plants that achieves nuclear condensation compatible with active transcription.
Asunto(s)
Arabidopsis , Tamaño de la Célula , Cromatina , Histonas , Polen , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Histonas/clasificación , Histonas/genética , Histonas/metabolismo , Protaminas , Polen/citología , Polen/genética , Polen/metabolismo , Regulación de la Expresión Génica de las Plantas , Secuencia Rica en At , Núcleo Celular/genética , Mutación , Tamaño del Núcleo Celular , Transición de Fase , Transcripción GenéticaRESUMEN
This paper proposes a calibration method for a self-rotating, linear-structured-light (LSL) scanning, three-dimensional reconstruction system based on plane constraints. The point cloud of plane target collected by the self-rotating, LSL scanning, 3D reconstruction system should be constrained to the basic principle of the plane equation; it can quickly and accurately calibrate the position parameters between the coordinate system of the LSL module and the coordinate system of the self-rotating, LSL scanning, 3D reconstruction system. Additionally, the transformation equation could be established with the calibrated optimal position parameters. This paper obtains the above-mentioned position parameters through experiments and uses the calibrated self-rotating, LSL scanning, 3D reconstruction system to perform three-dimensional scanning and reconstruction of the test piece. The experimental results show that the calibration method can effectively improve the measurement accuracy of the system.
RESUMEN
Activation of cell-surface and intracellular receptor-mediated immunity results in rapid transcriptional reprogramming that underpins disease resistance. However, the mechanisms by which co-activation of both immune systems lead to transcriptional changes are not clear. Here, we combine RNA-seq and ATAC-seq to define changes in gene expression and chromatin accessibility. Activation of cell-surface or intracellular receptor-mediated immunity, or both, increases chromatin accessibility at induced defence genes. Analysis of ATAC-seq and RNA-seq data combined with publicly available information on transcription factor DNA-binding motifs enabled comparison of individual gene regulatory networks activated by cell-surface or intracellular receptor-mediated immunity, or by both. These results and analyses reveal overlapping and conserved transcriptional regulatory mechanisms between the two immune systems.
Asunto(s)
Cromatina , Redes Reguladoras de Genes , Resistencia a la Enfermedad , Humanos , Factores de Transcripción/genéticaRESUMEN
Co-immunoprecipitation (CoIP) assay has been used as a powerful and routine technique to detect in vivo protein-protein interactions. Not only can it probe stable interactions, but also it is applicable for semiquantitative and inducible protein associations. Here we describe the protocol for detecting blue light-dependent protein interactions, particularly for blue light receptor cryptochrome-mediated complex formation. In addition, we present some notes which may be helpful for common Co-IP study as well.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Inmunoprecipitación/métodos , Mapeo de Interacción de Proteínas/métodos , Western Blotting , Color , Criptocromos/metabolismo , Electroforesis en Gel de Poliacrilamida , Luz , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrolloRESUMEN
Transient protein expression in a heterologous system has been very useful in many research fields. As a plant expression system, tobacco has some unique advantages including big leaves, simple infiltration and transformation, high activity in expressing transgenes, and easy sampling for microscopy. Because of these advantages, tobacco system has been extensively used for many purposes, such as large-scale expression and purification of proteins of interest, protein colocalization, protein degradation, protein-protein interaction assays including co-immunoprecipitation (CoIP), fluorescence resonance energy transfer (FRET), and bimolecular fluorescence complementation (BiFC), transcription regulation, plant-pathogen interactions, and functional verification of small RNAs. A large number of publications have used this system and generated critical results to support their conclusions. The results obtained from tobacco system are highly reproducible and mostly consistent with those generated from traditional techniques, indicating its reliability. Here we describe a protocol for studying protein-protein interactions in tobacco system, which could be applied to multiple experimental purposes as the procedure of tobacco leaf infiltration is basically shared among them.
Asunto(s)
Inmunoprecipitación/métodos , Nicotiana/genética , Nicotiana/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Mapeo de Interacción de Proteínas/métodos , Agrobacterium/genética , Medios de Cultivo , Expresión Génica , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Plantas Modificadas Genéticamente , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genéticaRESUMEN
Arabidopsis CRY1 and phyB are the primary blue and red light photoreceptors mediating blue and red light inhibition of hypocotyl elongation, respectively. Auxin is a pivotal phytohormone involved in promoting hypocotyl elongation. CRY1 and phyB interact with and stabilize auxin/indole acetic acid proteins (Aux/IAAs) to inhibit auxin signaling. The present study investigated whether photoreceptors might interact directly with Auxin Response Factors (ARFs) to regulate auxin signaling. Protein-protein interaction studies demonstrated that CRY1 and phyB interact physically with ARF6 and ARF8 through their N-terminal domains in a blue and red light-dependent manner, respectively. Moreover, the N-terminal DNA-binding domain of ARF6 and ARF8 is involved in mediating their interactions with CRY1. Genetic studies showed that ARF6 and ARF8 act partially downstream from CRY1 and PHYB to regulate hypocotyl elongation under blue and red light, respectively. Chromatin immunoprecipitation-PCR assays demonstrated that CRY1 and phyB mediate blue and red light repression of the DNA-binding activity of ARF6 and ARF6-target gene expression, respectively. Altogether, the results herein suggest that the direct repression of auxin-responsive gene expression mediated by the interactions of CRY1 and phyB with ARFs constitutes a new layer of the regulatory mechanisms by which light inhibits auxin-induced hypocotyl elongation.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , ADN de Plantas/metabolismo , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Luz , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Criptocromos/química , Criptocromos/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Modelos Biológicos , Fitocromo B/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Dominios Proteicos , Factores de Transcripción/metabolismoRESUMEN
Transposable elements (TEs), the movement of which can damage the genome, are epigenetically silenced in eukaryotes. Intriguingly, TEs are activated in the sperm companion cell - vegetative cell (VC) - of the flowering plant Arabidopsis thaliana. However, the extent and mechanism of this activation are unknown. Here we show that about 100 heterochromatic TEs are activated in VCs, mostly by DEMETER-catalyzed DNA demethylation. We further demonstrate that DEMETER access to some of these TEs is permitted by the natural depletion of linker histone H1 in VCs. Ectopically expressed H1 suppresses TEs in VCs by reducing DNA demethylation and via a methylation-independent mechanism. We demonstrate that H1 is required for heterochromatin condensation in plant cells and show that H1 overexpression creates heterochromatic foci in the VC progenitor cell. Taken together, our results demonstrate that the natural depletion of H1 during male gametogenesis facilitates DEMETER-directed DNA demethylation, heterochromatin relaxation, and TE activation.
Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Desmetilación del ADN , Elementos Transponibles de ADN , Heterocromatina/metabolismo , Histonas/metabolismo , Células Vegetales/metabolismo , Proteínas de Arabidopsis/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , N-Glicosil Hidrolasas/metabolismo , Transactivadores/metabolismoRESUMEN
Light and the heterotrimeric G-protein are known to antagonistically regulate photomorphogenesis in Arabidopsis. However, whether light and G-protein coordinate the regulation of photomorphogenesis is largely unknown. Here we show that the blue light photoreceptor cryptochrome 1 (CRY1) physically interacts with the G-protein ß subunit, AGB1, in a blue light-dependent manner. We also show that AGB1 directly interacts with HY5, a basic leucine zipper transcriptional factor that acts as a critical positive regulator of photomorphogenesis, to inhibit its DNA-binding activity. Genetic studies suggest that CRY1 acts partially through AGB1, and AGB1 acts partially through HY5 to regulate photomorphogenesis. Moreover, we demonstrate that blue light-triggered interaction of CRY1 with AGB1 promotes the dissociation of HY5 from AGB1. Our results suggest that the CRY1 signaling mechanism involves positive regulation of the DNA-binding activity of HY5 mediated by the CRY1-AGB1 interaction, which inhibits the association of AGB1 with HY5. We propose that the antagonistic regulation of HY5 DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize photomorphogenesis.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Criptocromos/metabolismo , ADN de Plantas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Proteínas Nucleares/metabolismo , Desarrollo de la Planta/fisiología , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/antagonistas & inhibidores , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Luz , Fototransducción , Proteínas Nucleares/antagonistas & inhibidores , Unión ProteicaRESUMEN
Light is a key environmental cue that inhibits hypocotyl cell elongation through the blue and red/far-red light photoreceptors cryptochrome- and phytochrome-mediated pathways in Arabidopsis. In contrast, as a pivotal endogenous phytohormone auxin promotes hypocotyl elongation through the auxin receptors TIR1/AFBs-mediated degradation of AUX/IAA proteins (AUX/IAAs). However, the molecular mechanisms underlying the antagonistic interaction of light and auxin signaling remain unclear. Here, we report that light inhibits auxin signaling through stabilization of AUX/IAAs by blue and red light-dependent interactions of cryptochrome 1 (CRY1) and phytochrome B with AUX/IAAs, respectively. Blue light-triggered interactions of CRY1 with AUX/IAAs inhibit the associations of TIR1 with AUX/IAAs, leading to the repression of auxin-induced degradation of these proteins. Our results indicate that photoreceptors share AUX/IAAs with auxin receptors as the same direct downstream signaling components. We propose that antagonistic regulation of AUX/IAA protein stability by photoreceptors and auxin receptors allows plants to balance light and auxin signals to optimize their growth.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Criptocromos/metabolismo , Proteínas de Unión al ADN/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Proteínas Nucleares/metabolismo , Fitocromo B/metabolismo , Transducción de Señal/efectos de la radiación , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Unión al ADN/química , Proteínas Nucleares/química , Fitocromo/metabolismo , Unión Proteica/efectos de la radiación , Dominios ProteicosRESUMEN
Cytosine DNA methylation regulates the expression of eukaryotic genes and transposons. Methylation is copied by methyltransferases after DNA replication, which results in faithful transmission of methylation patterns during cell division and, at least in flowering plants, across generations. Transgenerational inheritance is mediated by a small group of cells that includes gametes and their progenitors. However, methylation is usually analyzed in somatic tissues that do not contribute to the next generation, and the mechanisms of transgenerational inheritance are inferred from such studies. To gain a better understanding of how DNA methylation is inherited, we analyzed purified Arabidopsis thaliana sperm and vegetative cells-the cell types that comprise pollen-with mutations in the DRM, CMT2, and CMT3 methyltransferases. We find that DNA methylation dependency on these enzymes is similar in sperm, vegetative cells, and somatic tissues, although DRM activity extends into heterochromatin in vegetative cells, likely reflecting transcription of heterochromatic transposons in this cell type. We also show that lack of histone H1, which elevates heterochromatic DNA methylation in somatic tissues, does not have this effect in pollen. Instead, levels of CG methylation in wild-type sperm and vegetative cells, as well as in wild-type microspores from which both pollen cell types originate, are substantially higher than in wild-type somatic tissues and similar to those of H1-depleted roots. Our results demonstrate that the mechanisms of methylation maintenance are similar between pollen and somatic cells, but the efficiency of CG methylation is higher in pollen, allowing methylation patterns to be accurately inherited across generations.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Citosina , ADN (Citosina-5-)-Metiltransferasas/genética , Elementos Transponibles de ADN , Epigénesis Genética , Genoma de Planta , Heterocromatina/metabolismo , Histonas/metabolismo , Hojas de la PlantaAsunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Hipocótilo/crecimiento & desarrollo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Criptocromos/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/genética , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Luz , Estructura Terciaria de ProteínaRESUMEN
Plants, as sessile organisms, must coordinate various physiological processes to adapt to ever-changing surrounding environments. Stomata, the epidermal pores facilitating gas and water exchange, play important roles in optimizing photosynthetic efficiency and adaptability. Stomatal development is under the control of an intrinsic program mediated by a secretory peptide gene family--namely, EPIDERMAL PATTERNING FACTOR, including positively acting STOMAGEN/EPFL9. The phytohormone brassinosteroids and environment factor light also control stomatal production. However, whether auxin regulates stomatal development and whether peptide signaling is coordinated with auxin signaling in the regulation of stomatal development remain largely unknown. Here we show that auxin negatively regulates stomatal development through MONOPTEROS (also known as ARF5) repression of the mobile peptide gene STOMAGEN in mesophyll. Through physiological, genetic, transgenic, biochemical, and molecular analyses, we demonstrate that auxin inhibits stomatal development through the nuclear receptor TIR1/AFB-mediated signaling, and that MONOPTEROS directly binds to the STOMAGEN promoter to suppress its expression in mesophyll and inhibit stomatal development. Our results provide a paradigm of cross-talk between phytohormone auxin and peptide signaling in the regulation of stomatal production.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Ácidos Indolacéticos/farmacología , Células del Mesófilo/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Emparejamiento Base/genética , Tipificación del Cuerpo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Células del Mesófilo/efectos de los fármacos , Modelos Biológicos , Péptidos/genética , Péptidos/metabolismo , Estomas de Plantas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Elementos de Respuesta/genética , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacosRESUMEN
In Arabidopsis thaliana, the cryptochrome and phytochrome photoreceptors act together to promote photomorphogenic development. The cryptochrome and phytochrome signaling mechanisms interact directly with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a RING motif-containing E3 ligase that acts to negatively regulate photomorphogenesis. COP1 interacts with and ubiquitinates the transcription factors that promote photomorphogenesis, such as ELONGATED HYPOCOTYL5 and LONG HYPOCOTYL IN FAR-RED1 (HFR1), to inhibit photomorphogenic development. Here, we show that COP1 physically interacts with PIF3-LIKE1 (PIL1) and promotes PIL1 degradation via the 26S proteasome. We further demonstrate that phyB physically interacts with PIL1 and enhances PIL1 protein accumulation upon red light irradiation, probably through suppressing the COP1-PIL1 association. Biochemical and genetic studies indicate that PIL1 and HFR1 form heterodimers and promote photomorphogenesis cooperatively. Moreover, we demonstrate that PIL1 interacts with PIF1, 3, 4, and 5, resulting in the inhibition of the transcription of PIF direct-target genes. Our results reveal that PIL1 stability is regulated by phyB and COP1, likely through physical interactions, and that PIL1 coordinates with HFR1 to inhibit the transcriptional activity of PIFs, suggesting that PIL1, HFR1, and PIFs constitute a subset of antagonistic basic helix-loop-helix factors acting downstream of phyB and COP1 to regulate photomorphogenic development.
RESUMEN
Seedling development including hypocotyl elongation is a critical phase in the plant life cycle. Light regulation of hypocotyl elongation is primarily mediated through the blue light photoreceptor cryptochrome and red/far-red light photoreceptor phytochrome signaling pathways, comprising regulators including COP1, HY5, and phytochrome-interacting factors (PIFs). The novel phytohormones, strigolactones, also participate in regulating hypocotyl growth. However, how strigolactone coordinates with light and photoreceptors in the regulation of hypocotyl elongation is largely unclear. Here, we demonstrate that strigolactone inhibition of hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways. The photoreceptor mutants cry1 cry2, phyA, and phyB are hyposensitive to strigolactone analog GR24 under the respective monochromatic light conditions, while cop1 and pif1 pif3 pif4 pif5 (pifq) quadruple mutants are hypersensitive to GR24 in darkness. Genetic studies indicate that the enhanced responsiveness of cop1 to GR24 is dependent on HY5 and MAX2, while that of pifq is independent of HY5. Further studies demonstrate that GR24 constitutively up-regulates HY5 expression in the dark and light, whereas GR24-promoted HY5 protein accumulation is light- and cryptochrome and phytochrome photoreceptor-dependent. These results suggest that the light dependency of strigolactone regulation of hypocotyl elongation is likely mediated through MAX2-dependent promotion of HY5 expression, light-dependent accumulation of HY5, and PIF-regulated components.