Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18949, 2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147784

RESUMEN

Secondhand vaping exposure is an emerging public health concern that remains understudied. In this study, saliva and exhaled emissions from ENDS users (secondhand) and non-ENDS users (baseline) were collected, firsthand emissions were generated using an automated ENDS aerosol generation system programmed to simulate puffing topography profiles collected from ENDS users. Particulate concentrations and sizes along with volatile organic compounds were characterized. We revealed puffing topography metrics as potential mediators of firsthand and secondhand particle and chemical exposures, as well as metabolic and respiratory health outcomes. Particle deposition modeling revealed that while secondhand emissions displayed smaller deposited mass, total and pulmonary particle deposition fractions were higher than firsthand deposition levels, possibly due to smaller secondhand emission particle diameters. Lastly, untargeted metabolomic profiling of salivary biomarkers of lung injury due to firsthand ENDS exposures revealed potential early indicators of respiratory distress that may also be relevant in bystanders exposed to secondhand vaping scenarios. By leveraging system toxicology, we identified 10 metabolites, including leukotriene D4, that could potentially serve as biomarkers for ENDS use, exposure estimation, and the prediction of vaping-related disease. This study highlights characterization of vaping behavior is an important exposure component in advancing our understanding of potential health effects in ENDS users and bystanders.


Asunto(s)
Vapeo , Humanos , Vapeo/efectos adversos , Proyectos Piloto , Masculino , Adulto , Femenino , Biomarcadores , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Saliva/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Sistemas Electrónicos de Liberación de Nicotina , Aerosoles/efectos adversos , Adulto Joven
2.
Anal Chem ; 96(29): 11809-11822, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-38975729

RESUMEN

Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.


Asunto(s)
Campos Electromagnéticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Congelación , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Plantas/metabolismo , Plantas/química , Flores/metabolismo , Flores/química
3.
Toxicology ; 504: 153772, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479551

RESUMEN

Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 µM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.


Asunto(s)
Bronquios , Células Epiteliales , Mitocondrias , Compuestos de Vanadio , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular , Compuestos de Vanadio/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Bronquios/citología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cadherinas/metabolismo , Relación Dosis-Respuesta a Droga
4.
Toxics ; 12(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38251022

RESUMEN

Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions from different filament types may have on respiratory health and underlying cellular mechanisms. In this study, we used an in vitro exposure chamber system to deliver emissions from two popular 3D-printing filament types, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), directly to human small airway epithelial cells (SAEC) cultured in an air-liquid interface during 3D printer operation. Using a scanning mobility particle sizer (SMPS) and an optical particle sizer (OPS), we monitored 3D printer particulate matter (PM) emissions in terms of their particle size distribution, concentrations, and calculated deposited doses. Elemental composition of ABS and PLA emissions was assessed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Finally, we compared the effects of emission exposure on cell viability, inflammation, and metabolism in SAEC. Our results reveal that, although ABS filaments emitted a higher total concentration of particles and PLA filaments emitted a higher concentration of smaller particles, SAEC were exposed to similar deposited doses of particles for each filament type. Conversely, ABS and PLA emissions had distinct elemental compositions, which were likely responsible for differential effects on SAEC viability, oxidative stress, release of inflammatory mediators, and changes in cellular metabolism. Specifically, while ABS- and PLA-emitted particles both reduced cellular viability and total glutathione levels in SAEC, ABS emissions had a significantly greater effect on glutathione relative to PLA emissions. Additionally, pro-inflammatory cytokines including IL-1ß, MMP-9, and RANTES were significantly increased due to ABS emissions exposure. While IL-6 and IL-8 were stimulated in both exposure scenarios, VEGF was exclusively increased due to PLA emissions exposures. Notably, ABS emissions induced metabolic perturbation on amino acids and energy metabolism, as well as redox-regulated pathways including arginine, methionine, cysteine, and vitamin B3 metabolism, whereas PLA emissions exposures caused fatty acid and carnitine dysregulation. Taken together, these results advance our mechanistic understanding of 3D-printer-emissions-induced respiratory toxicity and highlight the role that filament emission properties may play in mediating different respiratory outcomes.

5.
Glob Chang Biol ; 30(1): e17111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273581

RESUMEN

While there is an extensive body of research on the influence of climate warming on total soil microbial communities, our understanding of how rhizosphere and non-rhizosphere soil microorganisms respond to warming remains limited. To address this knowledge gap, we investigated the impact of 4 years of soil warming on the diversity and composition of microbial communities in the rhizosphere and non-rhizosphere soil of a temperate steppe, focusing on changes in root exudation rates and exudate compositions. We used open top chambers to simulate warming conditions, resulting in an average soil temperature increase of 1.1°C over a span of 4 years. Our results showed that, in the non-rhizosphere soil, warming had no significant impact on dissolved organic carbon concentrations, compositions, or the abundance of soil microbial functional genes related to carbon and nitrogen cycling. Moreover, soil microbial diversity and community composition remained largely unaffected, although warming resulted in increased complexity of soil bacteria and fungi in the non-rhizosphere soil. In contrast, warming resulted in a substantial decrease in root exudate carbon (by 19%) and nitrogen (by 12%) concentrations and induced changes in root exudate compositions, primarily characterized by a reduction in the abundance in alcohols, coenzymes and vitamins, and phenylpropanoids and polyketides. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil. The study of soil microbial structure and function in rhizosphere and non-rhizosphere soil provides an ideal setting for understanding mechanisms for governing rhizosphere and non-rhizosphere soil carbon and nitrogen cycles. Our results highlight the distinctly varied responses of soil microorganisms in the rhizosphere and non-rhizosphere soil to climate warming. This suggests the need for models to address these processes individually, enabling more accurate predictions of the impacts of climate change on terrestrial carbon cycling.


Asunto(s)
Rizosfera , Suelo , Suelo/química , Microbiología del Suelo , Carbono/metabolismo , Nitrógeno/metabolismo
6.
Innovation (Camb) ; 5(1): 100559, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38239781
7.
Toxicol Sci ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37941452

RESUMEN

Early-life respiratory syncytial virus (RSV) infection (eRSV) is one of the leading causes of serious pulmonary disease in children. eRSV is associated with higher risk of developing asthma and compromised lung function later in life. Cadmium (Cd) is a toxic metal, widely present in the environment and in food. We recently showed that eRSV re-programs metabolism and potentiates Cd toxicity in the lung, and our transcriptome-metabolome-wide study showed strong associations between S-palmitoyl transferase expression and Cd-stimulated lung inflammation and fibrosis signaling. Limited information is available on the mechanism by which eRSV re-programs metabolism and potentiates Cd toxicity in the lung. In the current study, we used a mouse model to examine the role of protein S-palmitoylation (Pr-S-Pal) in low dose Cd-elevated lung metabolic disruption and inflammation following eRSV. Mice exposed to eRSV were later treated with Cd (3.3 mg CdCl2/L) in drinking water for 6 weeks (RSV+Cd). The role of Pr-S-Pal was studied using a palmitoyl transferase inhibitor, 2-bromopalmitate (BP, 10 µM). Inflammatory marker analysis showed that cytokines, chemokines and inflammatory cells were highest in the RSV+Cd group, and BP decreased inflammatory markers. Lung metabolomics analysis showed that pathways including phenylalanine, tyrosine and tryptophan, phosphatidylinositol and sphingolipid were altered across treatments. BP antagonized metabolic disruption of sphingolipid and glycosaminoglycan metabolism by RSV+Cd, consistent with BP effect on inflammatory markers. This study shows that Cd exposure following eRSV has a significant impact on subsequent inflammatory response and lung metabolism, which is mediated by Pr-S-Pal, and warrants future research for a therapeutic target.

8.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L215-L232, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37310758

RESUMEN

Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.


Asunto(s)
Fibrosis Pulmonar Idiopática , Vanadio , Masculino , Humanos , Ratones , Animales , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Vanadio/toxicidad , Vanadio/metabolismo , Ratones Endogámicos C57BL , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/patología , Inflamación/patología , Mamíferos
9.
J Fungi (Basel) ; 9(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37233260

RESUMEN

Soil moisture content (SWC) can change the diversity and composition of soil fungal communities by affecting soil texture and soil nutrients. To explore the response of soil fungal communities to moisture in the grassland ecosystem on the south shore of Hulun Lake, we set up a natural moisture gradient that was subdivided into high (HW), medium (MW), and low (LW) water contents. Vegetation was investigated by quadrat method, and aboveground biomass was collected by the mowing method. Soil physicochemical properties were obtained by internal experiments. The composition of the soil fungal community was determined using high-throughput sequencing technology. The results showed significant differences in soil texture, nutrients, and fungal species diversity under the moisture gradients. Although there was significant clustering of fungal communities in different treatments, the fungal community composition was not significantly different. According to the phylogenetic tree, the Ascomycota and Basidiomycota were the most important branches. The fungal species diversity was smaller when SWC was higher, and in this environment (HW), the fungal-dominant species were significantly related to SWC and soil nutrients. At this time, soil clay formed a protective barrier for the survival of the dominant classes Sordariomycetes and Dothideomycetes and increased their relative abundance. In summary, the fungal community responded significantly to SWC on the southern shore of the Hulun Lake ecosystem in Inner Mongolia, China, and the fungal community composition of the HW group was stable and easier to survive.

10.
Plant Cell Tissue Organ Cult ; 153(3): 511-523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197002

RESUMEN

The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11240-023-02486-7.

11.
Adv Redox Res ; 72023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37034445

RESUMEN

Cadmium (Cd) is a toxic environmental metal that interacts with selenium (Se) and contributes to many lung diseases. Humans have widespread exposures to Cd through diet and cigarette smoking, and studies in rodent models show that Se can protect against Cd toxicities. We sought to identify whether an antagonistic relationship existed between Se and Cd burdens and determine whether this relationship may associate with metabolic variation within human lungs. We performed metabolomics of 31 human lungs, including 25 with end-stage lung disease due to idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive lung disease (COPD)/emphysema and other causes, and 6 non-diseased lungs. Results showed pathway associations with Cd including amino acid, lipid and energy-related pathways. Metabolic pathways varying with Se had considerable overlap with these pathways. Hierarchical cluster analysis (HCA) of individuals according to metabolites associated with Cd showed partial separation of disease types, with COPD/emphysema in the cluster with highest Cd, and non-diseased lungs in the cluster with the lowest Cd. When compared to HCA of metabolites associated with Se, the results showed that the cluster containing COPD/emphysema had the lowest Se, and the non-diseased lungs had the highest Se. A greater number of pathway associations occurred for Cd to Se ratio than either Cd or Se alone, indicating that metabolic patterns were more dependent on Cd to Se ratio than on either alone. Network analysis of interactions of Cd and Se showed network centrality was associated with pathways linked to polyunsaturated fatty acids involved in inflammatory signaling. Overall, the data show that metabolic pathway responses in human lung vary with Cd and Se in a pattern suggesting that Se is antagonistic to Cd toxicity in humans.

12.
Appl Microbiol Biotechnol ; 107(5-6): 1931-1946, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36800029

RESUMEN

Pigeon pea hairy root cultures (PPHRCs) have been proven to be a promising alternative for the production of health-beneficial phenolic compounds, such as the most important health-promoting compound, i.e., cajaninstilbene acid (CSA). In this study, PPHRCs were cocultured with live Aspergillus fungi for further improving phenolic productivity via biological elicitation. Aspergillus oryzae CGMCC 3.951 (AO 3.951) was found to be the optimal fungus that could achieve the maximum increment of CSA (10.73-fold increase) in 42-day-old PPHRCs under the inoculum size of mycelia 0.50% and cocultivation time 36 h. More precisely, the contents of CSA in hairy roots and culture media after fungal elicitation increased by 9.87- and 62.18-fold over control, respectively. Meanwhile, the contents of flavonoid glycosides decreased, while aglycone yields increased upon AO 3.951 elicitation. Moreover, AO 3.951 could trigger the oxidative stress and pathogen defense response thus activating the expression of biosynthesis- and ABC transporter-related genes, which contributed to the intracellular accumulation and extracellular secretion of phenolic compounds (especially CSA) in PPHRCs. And PAL2, 4CL2, STS1, and I3'H were likely to be the potential key enzyme genes regulating the biosynthesis of CSA, and ABCB11X1-1, ABCB11, and ABCG24X2 were closely related to the transmembrane transport of CSA. Overall, the cocultivation approach could make PPHRCs more commercially attractive for the production of high-value phenolic compounds such as CSA and flavonoid aglycones in nutraceutical/medicinal fields. And the elucidation of crucial biosynthesis and transport genes was important for systematic metabolic engineering aimed at increasing CSA productivity. KEY POINTS: • Cocultivation of PPHRCs and live fungi was to enhance CSA production and secretion. • PPHRCs augmented CSA productivity 10.73-fold when cocultured with AO 3.951 mycelia. • Several biosynthesis and transport genes related to CSA production were clarified.


Asunto(s)
Cajanus , Cajanus/metabolismo , Técnicas de Cocultivo , Pisum sativum/metabolismo , Flavonoides/metabolismo , Fenoles/metabolismo , Aspergillus/metabolismo , Raíces de Plantas/microbiología
13.
Toxicol Appl Pharmacol ; 459: 116327, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36460058

RESUMEN

Vanadium is a toxic metal listed by the IARC as possibly carcinogenic to humans. Manufactured nanosize vanadium pentoxide (V2O5) materials are used in a wide range of industrial sectors and recently have been developed as nanomedicine for cancer therapeutics, yet limited information is available to evaluate relevant nanotoxicity. In this study we used high-resolution metabolomics to assess effects of two V2O5 nanomaterials, nanoparticles and nanofibers, at exposure levels (0.01, 0.1, and 1 ppm) that did not cause cell death (i.e., non-cytotoxic) in a human airway epithelial cell line, BEAS-2B. As prepared, V2O5 nanofiber exhibited a fibrous morphology, with a width approximately 63 ± 12 nm and length in average 420 ± 70 nm; whereas, V2O5 nanoparticles showed a typical particle morphology with a size 36 ± 2 nm. Both V2O5 nanoparticles and nanofibers had dose-response effects on aminosugar, amino acid, fatty acid, carnitine, niacin and nucleotide metabolism. Differential effects of the particles and fibers included dibasic acid, glycosphingolipid and glycerophospholipid pathway associations with V2O5 nanoparticles, and cholesterol and sialic acid metabolism associations with V2O5 nanofibers. Examination by transmission electron microscopy provided evidence for mitochondrial stress and increased lysosome fusion by both nanomaterials, and these data were supported by effects on mitochondrial membrane potential and lysosomal activity. The results showed that non-cytotoxic exposures to V2O5 nanomaterials impact major metabolic pathways previously associated with human lung diseases and suggest that toxico-metabolomics may be useful to evaluate health risks from V2O5 nanomaterials.


Asunto(s)
Nanofibras , Nanopartículas , Humanos , Nanofibras/toxicidad , Carcinógenos/toxicidad , Células Epiteliales , Carcinogénesis , Nanopartículas/toxicidad
14.
Chemosphere ; 312(Pt 1): 137114, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334752

RESUMEN

Endocrine disrupting compounds (EDCs) have been increasingly detected in drinking water sources, and pose severe threat to human health. Polyamide (PA) based nanofiltration (NF) membrane has great potential for EDCs removal from water, but the removal of hydrophobic EDCs is not satisfying due to strong hydrophobic affinity. In this study, UiO-66-NH2/PA membranes were prepared by predepositing hydrophilic UiO-66-NH2 onto the substrate prior to interfacial polymerization. The UiO-66-NH2 aggregates increased the permeable area and strengthened the "gutter effect". Therefore, the pure water flux of UiO-66-NH2/PA increased by 115% compared with that of the thin-film composite (TFC) membrane, and its rejection of Na2SO4 was 96%. The hydrophilicity-enhanced PA film reduced its adsorption of EDCs and decreased the driving force for EDCs diffusion. Moreover, the UiO-66-NH2-induced hydrophilic nanochannels, including the interfacial gaps between PA film and UiO-66-NH2 aggregates, the gaps in UiO-66-NH2 aggregates, and the inherent pores in UiO-66-NH2 crystals, alleviated the hydrophobic affinity and effectively restricted EDCs diffusion. The rejection rates of methylparaben, propylparaben, bisphenol A, and benzylparaben by the optimal UiO-66-NH2/PA were 50%, 67%, 75%, and 85%, respectively, and the water/benzylparaben selectivity was 4.4 times as high as that of TFC. The results demonstrate that incorporating hydrophilic metal-organic frameworks (MOFs) can improve the membrane hydrophilicity and create hydrophilic nanochannels, and is an effective strategy to enhance EDCs removal by nanofiltration.


Asunto(s)
Disruptores Endocrinos , Ácidos Ftálicos , Humanos , Nylons , Agua
15.
Glob Chang Biol ; 28(24): 7270-7285, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36176238

RESUMEN

Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3 - ) and NO3 - concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3 - and NO3 - is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.


Asunto(s)
Nitratos , Óxido Nitroso , Óxido Nitroso/análisis , Nitratos/análisis , Materia Orgánica Disuelta , Monitoreo del Ambiente , Ríos
16.
Redox Biol ; 55: 102409, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35870339

RESUMEN

Both environmental exposure to vanadium pentoxide (V2O5, V+5 for its ionic counterparts) and fibroblast senescence are associated with pulmonary fibrosis, but whether V+5 causes fibroblast senescence remains unknown. We found in a dose-response study that 2-40 µM V+5 caused human lung fibroblasts (HLF) senescence with increased senescence-associated ß-galactosidase activity and p16 expression, while cell death occurred at higher concentration (LC50, 82 µM V+5). Notably, measures of reactive oxygen species (ROS) production with fluorescence probes showed no association of ROS with V+5-dependent senescence. Preloading catalase (polyethylene-conjugated), a H2O2 scavenger, did not alleviate the cellular senescence induced by V+5. Analyses of the cellular glutathione (GSH) system showed that V+5 oxidized GSH, increased GSH biosynthesis, stimulated cellular GSH efflux and increased protein S-glutathionylation, and addition of N-acetyl cysteine inhibited V+5-elevated p16 expression, suggesting that thiol oxidation mediates V+5-caused senescence. Moreover, strong correlations between GSSG/GSH redox potential (Eh), protein S-glutathionylation, and cellular senescence (R2 > 0.99, p < 0.05) were present in V+5-treated cells. Studies with cell-free and enzyme-free solutions showed that V+5 directly oxidized GSH with formation of V+4 and GSSG in the absence of O2. Analyses of V+5 and V+4 in HLF and culture media showed that V+5 was reduced to V+4 in cells and that a stable V+4/V+5 ratio was rapidly achieved in extracellular media, indicating ongoing release of V+4 and reoxidation to V+5. Together, the results show that V+5-dependent fibroblast senescence is associated with a cellular/extracellular redox cycling mechanism involving the GSH system and occurring under conditions that do not cause cell death. These results establish a mechanism by which environmental vanadium from food, dietary supplements or drinking water, can cause or contribute to lung fibrosis in the absence of high-level occupational exposures and cytotoxic cell death.

17.
Toxicol Sci ; 188(1): 62-74, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35512398

RESUMEN

Respiratory syncytial virus (RSV) infection causes serious pulmonary disease and death in high-risk infants and elderly. Cadmium (Cd) is a toxic environmental metal contaminant and constantly exposed to humans. Limited information is available on Cd toxicity after early-life respiratory virus infection. In this study, we examined the effects of low-dose Cd exposure following early-life RSV infection on lung metabolism and inflammation using mouse and fibroblast culture models. C57BL/6J mice at 8 days old were exposed to RSV 2 times with a 4-week interval. A subset of RSV-infected mice was subsequently treated with Cd at a low dose in drinking water (RSV infection at infant age [RSVinf]+Cd) for 16 weeks. The results of inflammatory marker analysis showed that the levels of cytokines and chemokines were substantially higher in RSVinf+Cd group than other groups, implying that low-dose Cd following early-life RSV infection enhanced lung inflammation. Moreover, histopathology data showed that inflammatory cells and thickening of the alveolar walls as a profibrotic signature were evident in RSVinf+Cd. The metabolomics data revealed that RSVinf+Cd-caused metabolic disruption in histamine and histidine, vitamin D and urea cycle, and pyrimidine pathway accompanying with mechanistic target of rapamycin complex-1 activation. Taken together, our study demonstrates for the first time that cumulative Cd exposure following early-life RSV infection has a significant impact on subsequent inflammation and lung metabolism. Thus, early-life respiratory infection may reprogram metabolism and potentiate Cd toxicity, enhance inflammation, and cause fibrosis later in life.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Animales , Cadmio , Inflamación/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitiales Respiratorios
18.
J Agric Food Chem ; 70(18): 5680-5690, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35475338

RESUMEN

Germinated pigeon pea seeds (GPPSs) are good dietary supplements with satisfactory nutritional and medicinal values. In this study, UV-B treatment was used to promote the accumulation of health-promoting phenolic compounds (10 flavonoids and 1 stilbene) in GPPS. The total yield of 11 phenolic compounds (235 839.76 ± 17 118.24 ng/g DW) significantly improved (2.53-fold increase) in GPPSs exposed to UV-B radiation (3 W/m2) for 8 h, whereas free amino acid and reducing sugar contents exhibited a decreasing tendency during UV-B exposure. Meanwhile, the positive response in the antioxidant activities of enzymes and nonenzymatic extracts was noticed in UV-B-treated GPPSs. Moreover, UV-B radiation could cause tissue damages in hypocotyls and cotyledons of the GPPSs and enhance the generation of endogenous salicylic acid, thus activating the expression of biosynthesis genes (especially CHS and STS1). Overall, the simple UV-B supplementation strategy makes GPPSs more attractive as functional foods/nutraceuticals in diet for promoting human health.


Asunto(s)
Antioxidantes , Cajanus , Antioxidantes/química , Cajanus/química , Expresión Génica , Pisum sativum/metabolismo , Fenoles/química , Ácido Salicílico/metabolismo , Semillas/química , Rayos Ultravioleta
19.
Nanoscale ; 13(38): 16307-16315, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34559870

RESUMEN

Electrochemical nitrogen reduction reaction (NRR) driven by a renewable energy source offers a sustainable and environmentally benign route to produce ammonia (NH3), but it is highly dependent on efficient and specific catalysts to reduce the high reaction barrier and improve the selectivity. Defect engineering is extensively used to regulate the surface properties of materials to improve their catalytic performance. Herein we synthesized SnO2 with different oxygen vacancy concentrations by a controllable electrochemical method for electrocatalytic nitrogen (N2) fixation. The prepared SnO2 was used as an electrocatalyst and exhibited excellent NRR performance with an optimal NH3 yield rate of 25.27 µg h-1 mgcat.-1 and faradaic efficiency of 11.48% at -0.6 V (vs. the reversible hydrogen electrode) in 0.1 M Na2SO4. Oxygen vacancies provide more active sites and greater electron transfer ability on the catalyst surface to facilitate N2 adsorption and activation. The electrocatalytic NRR performance of SnO2 was enhanced with the increase in oxygen vacancy concentration. The density functional theory calculations indicate that the oxygen vacancies in SnO2 promote the electrocatalytic NRR performance by increasing the number of valence electrons of Sn and decreasing the energy barrier of the potential-determining step, thus promoting the activation of the N-N bond to further achieve efficient N2 fixation.

20.
mBio ; 12(3)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975943

RESUMEN

About 382 Tg yr-1 of methane rising through the seafloor is oxidized anaerobically (W. S. Reeburgh, Chem Rev 107:486-513, 2007, https://doi.org/10.1021/cr050362v), preventing it from reaching the atmosphere, where it acts as a strong greenhouse gas. Microbial consortia composed of anaerobic methanotrophic archaea and sulfate-reducing bacteria couple the oxidation of methane to the reduction of sulfate under anaerobic conditions via a syntrophic process. Recent experimental studies and modeling efforts indicate that direct interspecies electron transfer (DIET) is involved in this syntrophy. Here, we explore a fluorescent in situ hybridization-nanoscale secondary ion mass spectrometry data set of large, segregated anaerobic oxidation of methane (AOM) consortia that reveal a decline in metabolic activity away from the archaeal-bacterial interface and use a process-based model to identify the physiological controls on rates of AOM. Simulations reproducing the observational data reveal that ohmic resistance and activation loss are the two main factors causing the declining metabolic activity, where activation loss dominated at a distance of <8 µm. These voltage losses limit the maximum spatial distance between syntrophic partners with model simulations, indicating that sulfate-reducing bacterial cells can remain metabolically active up to ∼30 µm away from the archaeal-bacterial interface. Model simulations further predict that a hybrid metabolism that combines DIET with a small contribution of diffusive exchange of electron donors can offer energetic advantages for syntrophic consortia.IMPORTANCE Anaerobic oxidation of methane is a globally important, microbially mediated process reducing the emission of methane, a potent greenhouse gas. In this study, we investigate the mechanism of how a microbial consortium consisting of archaea and bacteria carries out this process and how these organisms interact with each other through the sharing of electrons. We present a process-based model validated by novel experimental measurements of the metabolic activity of individual, phylogenetically identified cells in very large (>20-µm-diameter) microbial aggregates. Model simulations indicate that extracellular electron transfer between archaeal and bacterial cells within a consortium is limited by potential losses and suggest that a flexible use of electron donors can provide energetic advantages for syntrophic consortia.


Asunto(s)
Bacterias/metabolismo , Metano/metabolismo , Consorcios Microbianos/fisiología , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Transporte de Electrón , Sedimentos Geológicos/microbiología , Hibridación Fluorescente in Situ , Consorcios Microbianos/genética , Oxidación-Reducción , Filogenia , Sulfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA