Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
BMC Anesthesiol ; 24(1): 243, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026147

RESUMEN

OBJECTIVES: Currently, there remains debate regarding the optimal anesthesia approach for patients undergoing intra-arterial therapy for acute ischemic stroke. Therefore, we conducted a comparative analysis to assess the effects of general anesthesia versus non general anesthesia on patient outcomes. METHODS: The research methodology entailed comprehensive searches of prominent databases such as the Cochrane Library, PubMed, Scopus, and Web of Science, covering the period from January 1, 2010, to March 1, 2024. Data synthesis employed techniques like risk ratio or standardized mean difference, along with 95% confidence intervals. The study protocol was prospectively registered with PROSPERO (CRD42024523079). RESULTS: A total of 27 trials and 12,875 patients were included in this study. The findings indicated that opting for non-general anesthesia significantly decreased the risk of in-hospital mortality (RR, 1.98; 95% CI: 1.50 to 2.61; p<0.00001; I2 = 20%), as well as mortality within three months post-procedure (RR, 1.24; 95% CI: 1.15 to 1.34; p<0.00001; I2 = 26%), while also leading to a shorter hospitalization duration (SMD, 0.24; 95% CI: 0.15 to 0.33; p<0.00001; I2 = 44%). CONCLUSION: Ischemic stroke patients who undergo intra-arterial treatment without general anesthesia have a lower risk of postoperative adverse events and less short-term neurological damage. In routine and non-emergency situations, non-general anesthetic options may be more suitable for intra-arterial treatment, offering greater benefits to patients. In addition to this, the neuroprotective effects of anesthetic drugs should be considered more preoperatively and postoperatively.


Asunto(s)
Accidente Cerebrovascular Isquémico , Humanos , Anestesia General/métodos , Anestesia/métodos , Mortalidad Hospitalaria
2.
Small ; : e2404011, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864206

RESUMEN

While MXene is widely used as an electrode material for supercapacitor, the intrinsic limitation of stacking caused by the interlayer van der Waals forces has yet to be overcome. In this work, a strategy is proposed to fabricate a composite scaffold electrode (MCN) by intercalating MXene with highly nitrogen-doped carbon nanosheets (CN). The 2D structured CN, thermally converted and pickling from Zn-hexamine (Zn-HMT), serves as a spacer that effectively prevents the stacking of MXene and contributes to a hierarchically scaffolded structure, which is conducive to ion movement; meanwhile, the high nitrogen-doping of CN tunes the electronic structure of MCN to facilitate charge transfer and providing additional pseudocapacitance. As a result, the MCN50 composite electrode achieves a high specific capacitance of 418.4 F g-1 at 1 A g-1. The assembled symmetric supercapacitor delivers a corresponding power density of 1658.9 W kg-1 and an energy density of 30.8 Wh kg-1. The all-solid-state zinc ion supercapacitor demonstrates a superior energy density of 68.4 Wh kg-1 and a power density of 403.5 W kg-1 and shows a high capacitance retention of 93% after 8000 charge-discharge cycles. This study sheds a new light on the design and development of novel MXene-based composite electrodes for high performance all-solid-state zinc ion supercapacitor.

3.
Bioengineering (Basel) ; 11(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38391624

RESUMEN

Glaucoma is a leading cause of irreversible blindness, and early detection and treatment are crucial for preventing vision loss. This review aims to provide an overview of current diagnostic and treatment standards, recent medical and technological advances, and current challenges and future outlook for wearable glaucoma diagnostics and therapeutics. Conventional diagnostic techniques, including the rebound tonometer and Goldmann Applanation Tonometer, provide reliable intraocular pressure (IOP) measurement data at single-interval visits. The Sensimed Triggerfish and other emerging contact lenses provide continuous IOP tracking, which can improve diagnostic IOP monitoring for glaucoma. Conventional therapeutic techniques include eye drops and laser therapies, while emerging drug-eluting contact lenses can solve patient noncompliance with eye medications. Theranostic platforms combine diagnostic and therapeutic capabilities into a single device. Advantages of these platforms include real-time monitoring and personalized medication dosing. While there are many challenges to the development of wearable glaucoma diagnostics and therapeutics, wearable technologies hold great potential for enhancing glaucoma management by providing continuous monitoring, improving medication adherence, and reducing the disease burden on patients and healthcare systems. Further research and development of these technologies will be essential to optimizing patient outcomes.

4.
Adv Mater ; : e2307632, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38126914

RESUMEN

Soft electronic circuits are crucial for wearable electronics, biomedical technologies, and soft robotics, requiring soft conductive materials with high conductivity, high strain limit, and stable electrical performance under deformation. Liquid metals (LMs) have become attractive candidates with high conductivity and fluidic compliance, while effective manufacturing methods are demanded. Digital light processing (DLP)-based projection lithography is a high-resolution and high-throughput printing technique for primarily polymers and some metals. If LMs can be printed with DLP as well, the entire soft devices can be fabricated by one printer in a streamlined and highly efficient process. Herein, fast and facile DLP-based LM printing is achieved. Simply with 5-10 s of patterned ultraviolet (UV)-light exposure, a highly conductive and stretchable pattern can be printed using a photo-crosslinkable LM particle ink. The printed eutectic gallium indium traces feature high resolution (≈20 µm), conductivity (3 × 106 S m-1 ), stretchability (≈2500%), and excellent stability (consistent performance at different deformation). Various patterns are printed in diverse material systems for broad applications including stretchable displays, epidermal strain sensors, heaters, humidity sensors, conformal electrodes for electrography, and multi-layer actuators. The facile and scalable process, excellent performance, and diverse applications ensure its broad impact on soft electronic manufacturing.

5.
ACS Appl Mater Interfaces ; 15(41): 48683-48694, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37812741

RESUMEN

Flexible pressure sensors are increasingly sought after for applications ranging from physiological signal monitoring to robotic sensing; however, the challenges associated with fabricating highly sensitive, comfortable, and cost-effective sensors remain formidable. This study presents a high-performance, all-fabric capacitive pressure sensor (AFCPS) that incorporates piezoelectric nanofibers. Through the meticulous optimization of conductive fiber electrodes and P(VDF-TrFE) nanofiber dielectric layers, the AFCPS exhibits exceptional attributes such as high sensitivity (4.05 kPa-1), an ultralow detection limit (0.6 Pa), an extensive detection range (∼100 kPa), rapid response time (<26 ms), and robust stability (>14,000 cycles). The sensor's porous structure enhances its compressibility, while its piezoelectric properties expedite charge separation, thereby increasing the interface capacitance and augmenting overall performance. These features are elucidated further through multiphysical field-coupling simulations and experimental testing. Owing to its comprehensive superior performance, the AFCPS has demonstrated its efficacy in monitoring human activity and physiological signals, as well as in discerning soft robotic grasping movements. Additionally, we have successfully implemented multiple AFCPS units as pressure sensor arrays to ascertain spatial pressure distribution and enable intelligent robotic gripping. Our research underscores the promising potential of the AFCPS device in wearable electronics and robotic sensing, thereby contributing significantly to the advancement of high-performance fabric-based sensors.


Asunto(s)
Nanofibras , Procedimientos Quirúrgicos Robotizados , Robótica , Dispositivos Electrónicos Vestibles , Humanos , Nanofibras/química , Presión
6.
Nat Mater ; 22(10): 1171-1172, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758976
7.
Proc Natl Acad Sci U S A ; 120(31): e2301364120, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487078

RESUMEN

In nearly all cases of underwater adhesion, water molecules typically act as a destroyer. Thus, removing interfacial water from the substrate surfaces is essential for forming super-strong underwater adhesion. However, current methods mainly rely on physical means to dislodge interfacial water, such as absorption, hydrophobic repulsion, or extrusion, which are inefficient in removing obstinate hydrated water at contact interface, resulting in poor adhesion. Herein, we present a unique means of reversing the role of water to assist in realizing a self-strengthening liquid underwater adhesive (SLU-adhesive) that can effectively remove water at contact interface. This is achieved through multiscale physical-chemical coupling methods across millimeter to molecular levels and self-adaptive strengthening of the cohesion during underwater operations. As a result, strong adhesion over 1,600 kPa (compared to ~100 to 1,000 kPa in current state of the art) can be achieved on various materials, including inorganic metal and organic plastic materials, without preloading in different environments such as pure water, a wide range of pH solutions (pH = 3 to 11), and seawater. Intriguingly, SLU-adhesive/photothermal nanoparticles (carbon nanotubes) hybrid materials can significantly reduce the time required for complete curing from 24 h to 40 min using near-infrared laser radiation due to unique thermal-response of the chemical reaction rate. The excellent adhesion property and self-adaptive adhesion procedure allow SLU-adhesive materials to demonstrate great potential for broad applications in underwater sand stabilization, underwater repair, and even adhesion failure detection as a self-reporting adhesive. This concept of "water helper" has potential to advance underwater adhesion and manufacturing strategies.

8.
Phys Chem Chem Phys ; 25(20): 13833-13837, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162519

RESUMEN

In this work, we report the electrochemical reactivity of MoTe2 for various metal ions with special emphasis on Al3+ ion storage in aqueous electrolytes for the first time. A stable discharge capacity of 100 mA h g-1 over 250 cycles at a current density of 1 Ag-1 could be obtained for the Al3+ ion, whereas inferior storage capacities were shown for other metal ions.

9.
Sci Robot ; 8(77): eadf4753, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37075101

RESUMEN

As the field of soft robotics advances, full autonomy becomes highly sought after, especially if robot motion can be powered by environmental energy. This would present a self-sustained approach in terms of both energy supply and motion control. Now, autonomous movement can be realized by leveraging out-of-equilibrium oscillatory motion of stimuli-responsive polymers under a constant light source. It would be more advantageous if environmental energy could be scavenged to power robots. However, generating oscillation becomes challenging under the limited power density of available environmental energy sources. Here, we developed fully autonomous soft robots with self-sustainability based on self-excited oscillation. Aided by modeling, we have successfully reduced the required input power density to around one-Sun level through a liquid crystal elastomer (LCE)-based bilayer structure. The autonomous motion of the low-intensity LCE/elastomer bilayer oscillator "LiLBot" under low energy supply was achieved by high photothermal conversion, low modulus, and high material responsiveness simultaneously. The LiLBot features tunable peak-to-peak amplitudes from 4 to 72 degrees and frequencies from 0.3 to 11 hertz. The oscillation approach offers a strategy for designing autonomous, untethered, and sustainable small-scale soft robots, such as a sailboat, walker, roller, and synchronized flapping wings.

10.
Adv Mater ; 35(18): e2211673, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36932878

RESUMEN

As the soaring demand for energy storage continues to grow, batteries that can cope with extreme conditions are highly desired. Yet, existing battery materials are limited by weak mechanical properties and freeze-vulnerability, prohibiting safe energy storage in devices that are exposed to low temperature and unusual mechanical impacts. Herein, a fabrication method harnessing the synergistic effect of co-nonsolvency and "salting-out" that can produce poly(vinyl alcohol) hydrogel electrolytes with unique open-cell porous structures, composed of strongly aggregated polymer chains, and containing disrupted hydrogen bonds among free water molecules, is introduced. The hydrogel electrolyte simultaneously combines high strength (tensile strength 15.6 MPa), freeze-tolerance (< -77 °C), high mass transport (10× lower overpotential), and dendrite and parasitic reactions suppression for stable performance (30 000 cycles). The high generality of this method is further demonstrated with poly(N-isopropylacrylamide) and poly(N-tertbutylacrylamide-co-acrylamide) hydrogels. This work takes a further step toward flexible battery development for harsh environments.

11.
Nano Lett ; 22(21): 8413-8421, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36301201

RESUMEN

As classic shape memory polymers featuring shape reconfiguration of temporary state, covalent adaptable networks containing reversible bonds can enable permanent-state reconfigurability through topological rearrangement via dynamic bond exchange. Yet, such an attractive dual shape programmability is limited by the actuation mode of direct heat transfer and poor mechanical properties, restricting its control precision and functionality. Herein, we presented a method to create nanocomposites with photomodulated dual shape programmability and remarkable mechanical properties leading the fields of covalent adaptable networks. MXene, whose photothermal efficiency was revealed to be regulated by the etching method and delamination, was introduced into polyurethane networks. Upon adjusting the light intensity, the dual shape programmability of both permanent and temporary states could be accomplished, which exhibited potential in information recognition, photowriting paper, etc. Furthermore, owing to the dynamic transcarbamoylation at elevated temperatures, such a phototriggered dual shape programmability could be maintained after the self-healing and reprocessing.


Asunto(s)
Nanocompuestos , Polímeros , Polímeros/química , Poliuretanos , Luz , Calor
12.
Adv Sci (Weinh) ; 9(32): e2203948, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36180403

RESUMEN

A chitosan composite with a vertical array of pore channels is fabricated via an electrophoretic deposition (EPD) technique. The composite consists of chitosan and polyethylene glycol, as well as nanoparticles of silver oxide and silver. The formation of hydrogen bubbles during EPD renders a localized increase of hydroxyl ions that engenders the precipitation of chitosan. In addition, chemical interactions among the constituents facilitate the establishment of vertical channels occupied by hydrogen bubbles that leads to the unique honeycomb-like microstructure; a composite with a porosity of 84%, channel diameter of 488 µm, and channel length of 2 mm. The chitosan composite demonstrates an impressive water uptake of 2100% and a two-stage slow release of silver. In mass transport analysis, both Disperse Red 13 and ZnO powders show a much enhanced transport rate over that of commercial gauze. Due to its excellent structural integrity and channel independence, the chitosan composite is evaluated in a passive suction mode for an adhesive force of 9.8 N (0.56 N cm-2 ). The chitosan composite is flexible and is able to maintain sufficient adhesive force toward objects with different surface curvatures.


Asunto(s)
Quitosano , Quitosano/química , Electroforesis , Porosidad , Polietilenglicoles/química , Hidrógeno
13.
Adv Mater ; 34(32): e2201772, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35703311

RESUMEN

Metal patterning via additive manufacturing has been phasing-in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal-patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one-step gold printing technique based on anion-assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 107 S m-1 ) under ambient conditions without post-annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Cl- ions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD-printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical-deposition-based metal patterning in flexible electronic manufacturing.

14.
Adv Mater ; 34(36): e2202478, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35767870

RESUMEN

Continuously and accurately monitoring pulse-wave signals is critical to prevent and diagnose cardiovascular diseases. However, existing wearable pulse sensors are vulnerable to motion artifacts due to the lack of proper adhesion and conformal interface with human skin during body movement. Here, a highly sensitive and conformal pressure sensor inspired by the kirigami structure is developed to measure the human pulse wave on different body artery sites under various prestressing pressure conditions and even with body movement. COMSOL multiphysical field coupling simulation and experimental testing are used to verify the unique advantages of the kirigami structure. The device shows a superior sensitivity (35.2 mV Pa-1 ) and remarkable stability (>84 000 cycles). Toward practical applications, a wireless cardiovascular monitoring system is developed for wirelessly transmitting the pulse signals to a mobile phone in real-time, which successfully distinguished the pulse waveforms from different participants. The pulse waveforms measured by the kirigami inspired pressure sensor are as accurate as those provided by the commercial medical device. Given the compelling features, the sensor provides an ascendant way for wearable electronics to overcome motion artifacts when monitoring pulse signals, thus representing a solid advancement toward personalized healthcare in the era of the Internet of Things.


Asunto(s)
Dispositivos Electrónicos Vestibles , Frecuencia Cardíaca , Humanos , Monitoreo Fisiológico , Movimiento (Física) , Pulso Arterial
15.
ACS Nano ; 16(6): 9348-9358, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35576460

RESUMEN

Bubbles play a crucial role in multidisciplinary industrial applications, e.g., heat transfer and mass transfer. However, existing methods to manipulate bubbles still face many challenges, such as buoyancy inhibition, hydrostatic pressure, gas dissolving, easy deformability, and so on. To circumvent these constraints, here we develop a bioinspired anisotropic slippery cilia surface to achieve an elegant bubble transport by tuning its elastic modulus, which results from the different contacts of bubbles with cilia, i.e., soft cilia will be easily bent by the bubble motion, while hard cilia will pierce into the bubble, consequently leading to the asymmetric three-phase contact line and resistance force. Moreover, a real-time and arbitrarily directional bubble manipulation is also demonstrated by applying an external magnetic field, enabling the scalable operation of bubbles in a remote manner. Our work exhibits a strategy of regulating bubble behavior smartly, which will update a wide range of gas-related sciences or technologies including gas evolution reactions, heat transfer, microfluidics, and so on.


Asunto(s)
Cilios , Microfluídica , Movimiento (Física) , Microfluídica/métodos , Módulo de Elasticidad , Anisotropía
16.
Biomaterials ; 285: 121479, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35487064

RESUMEN

Electrical stimulation can facilitate wound healing with high efficiency and limited side effects. However, current electrical stimulation devices have poor conformability with wounds due to their bulky nature and the rigidity of electrodes utilized. Here, a flexible electrical patch (ePatch) made with conductive hydrogel as electrodes to improve wound management was reported. The conductive hydrogel was synthesized using silver nanowire (AgNW) and methacrylated alginate (MAA), with the former chosen as the electrode material considering its antibacterial properties, and the latter used due to its clinical suitability in wound healing. The composition of the hydrogel was optimized to enable printing on medical-grade patches for personalized wound treatment. The ePatch was shown to promote re-epithelization, enhance angiogenesis, mediate immune response, and prevent infection development in the wound microenvironment. In vitro studies indicated an elevated secretion of growth factors with enhanced cell proliferation and migration ability in response to electrical stimulation. An in vivo study in the Sprague-Dawley rat model revealed a rapid wound closure within 7 days compared to 20 days of usual healing process in rodents.


Asunto(s)
Hidrogeles , Cicatrización de Heridas , Animales , Antibacterianos/farmacología , Electrodos , Hidrogeles/farmacología , Ratas , Ratas Sprague-Dawley
17.
Adv Sci (Weinh) ; 9(14): e2105986, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35486005

RESUMEN

Icing and frosting on transparent surfaces compromise visibility on various optical equipment and transparent infrastructures. It remains challenging to fabricate energy-saving coatings for harvesting solar energy while maintaining high transparency. Here, transparent, photothermic, and icephobic composite surfaces composed of photothermal nanomaterials and polyelectrolytes via layer-by-layer assembly are designed and constructed. The positively-charged polypyrrole nanoparticles and negatively-charged poly(acrylic acid) are assembled as exemplary materials via electrostatic attractions. The optically transparent photothermal coatings are successfully fabricated and exhibited photothermal capabilities and light-transmittance performance. Among the various coatings applied, the seven-bilayer coating can increase the temperature by 35 °C under 1.9-sun illumination, maintaining high transmittance (>60%) of visible light. With sunlight illumination at subzero temperatures (> -35 °C), the coatings show pronounced capabilities to inhibit freezing, melt accumulated frost, and decrease ice adhesion. Precisely, the icephobic surfaces remain free of frost at -35 °C as long as sunlight illumination is present; the accumulated frost melts rapidly within 300 s. The ice adhesion strength decreases to ≈0 kPa as the melted water acts as a lubricant. Furthermore, the negatively-charged graphene oxide and positively-charged poly(diallyldimethylammonium chloride) show their material diversity applicable in the coating fabrication.

18.
Adv Sci (Weinh) ; 8(24): e2102800, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34708584

RESUMEN

Directional transportation of objects has important applications from energy transfer and intelligent robots to biomedical devices. Although breakthroughs in liquid migration on 2D surfaces or 3D tubular devices have been achieved, realizing smooth/on-demand transportation of constrained solids within a 3D cavity environment under harsh pressurized environment still remains a daunting challenge, where strong interface friction force becomes the main obstacle restricting the movement of solids. Inspired by typical feeding mechanism in natural esophagus system which synergistically couples a lubricating mucosa surface with the peristaltic contraction deformation of the cavity, herein, this challenge is addressed by constructing an esophagus-inspired layered tubular actuator with a slippery inner surface and responsive hydrogel matrix to realize spherical solid propulsion by photo(thermo)-induced cavity deformation. The as-constructed tubular actuator containing Fe3 O4 nanoparticles exhibits local volumetric shrinkage upon NIR-irradiation, which can generate large hydrodynamic pressure and considerable mechanical extrusion force (Fdriving force ≈ 0.18 N) to overcome low interface friction force (ffriction force ≈ 0.03 N), enabling on-demand transportation of constrained (pressure: 0.103 MPa) spherical solids over a long distance in an arbitrary direction. This actuator is anticipated to be used as bionic medicine transportation devices or artificial in vitro esophagus simulation systems, for example, to help formula eating-related physiotherapy plans for patients and astronauts.


Asunto(s)
Materiales Biomiméticos , Biónica/métodos , Equipos y Suministros , Esófago/fisiología , Contracción Muscular/fisiología , Humanos , Lubrificación
19.
iScience ; 24(9): 102989, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34505006

RESUMEN

Hydrogels have gained tremendous attention due to their versatility in soft electronics, actuators, biomedical sensors, etc. Due to the high water content, hydrogels are usually soft, weak, and freeze below 0°C, which brings severe limitations to applications such as soft robotics and flexible electronics in harsh environments. Most existing anti-freezing gels suffer from poor mechanical properties and urgently need further improvements. Here, we took inspirations from tendon and coniferous trees and provided an effective method to strengthen polyvinyl alcohol (PVA) hydrogel while making it freeze resistant. The salting-out effect was utilized to create a hierarchically structured polymer network, which induced superior mechanical properties (Young's modulus: 10.1 MPa, tensile strength: 13.5 MPa, and toughness: 127.9 MJ/m3). Meanwhile, the cononsolvency effect was employed to preserve the structure and suppress the freezing point to -60°C. Moreover, we have demonstrated the broad applicability of our material by fabricating PVA hydrogel-based hydraulic actuators and ionic conductors.

20.
J Mater Chem B ; 9(35): 7196-7204, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34291267

RESUMEN

Label-free cell sorting devices are of great significance for biomedical research and clinical therapeutics. However, current platforms for label-free cell sorting cannot achieve continuity and selectivity simultaneously, resulting in complex steps and limited reliability. Here, an immunoaffinity-based cell catch-transport-release thermo-chemo-mechanical coupling hydrogel (iCatch) device is reported. It contains a temperature-responsive hydrogel that can generate spatial movement synergically with the reversible binding of affinity handle modified. The functionalized hydrogel is embedded inside a biphasic microfluidic platform to enable cell transportation between the flows. The cell sorting capability and biocompatibility of the iCatch device were validated with CCRF-CEM cells as a proof-of-concept, and CCRF-CEM-specific aptamers with thermo-responsive affinity as well as a hydrogel with temperature-dependent volume were employed accordingly. A cell catching efficiency of ∼40% and a recovery rate of ∼70% were achieved. The iCatch device provides a high-throughput (∼900 cells mm-1 s-1) platform for cell sorting and is ultimately valuable for downstream biomedical applications.


Asunto(s)
Aptámeros de Nucleótidos/química , Materiales Biocompatibles/química , Separación Celular , Hidrogeles/química , Dispositivos Laboratorio en un Chip , Aptámeros de Nucleótidos/síntesis química , Materiales Biocompatibles/síntesis química , Humanos , Hidrogeles/síntesis química , Ensayo de Materiales , Tamaño de la Partícula , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA