Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.225
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6605, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098918

RESUMEN

Cross-linked polymers with covalent adaptable networks (CANs) can be reprocessed under external stimuli owing to the exchangeability of dynamic covalent bonds. Optimization of reprocessing conditions is critical since increasing the reprocessing temperature costs more energy and even deteriorates the materials, while reducing the reprocessing temperature via molecular design usually narrows the service temperature range. Exploiting CO2 gas as an external trigger for lowering the reprocessing barrier shows great promise in low sample contamination and environmental friendliness. Herein, we develop a type of CANs incorporated with ionic clusters that achieve CO2-facilitated recyclability without sacrificing performance. The presence of CO2 can facilitate the rearrangement of ionic clusters, thus promoting the exchange of dynamic bonds. The effective stress relaxation and network rearrangement enable the system with rapid recycling under CO2 while retaining excellent mechanical performance in working conditions. This work opens avenues to design recyclable polymer materials with tunable dynamics and responsive recyclability.

2.
Quant Imaging Med Surg ; 14(8): 5845-5860, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39144059

RESUMEN

Background: Axial spondyloarthritis (axSpA) is frequently diagnosed late, particularly in human leukocyte antigen (HLA)-B27-negative patients, resulting in a missed opportunity for optimal treatment. This study aimed to develop an artificial intelligence (AI) tool, termed NegSpA-AI, using sacroiliac joint (SIJ) magnetic resonance imaging (MRI) and clinical SpA features to improve the diagnosis of axSpA in HLA-B27-negative patients. Methods: We retrospectively included 454 HLA-B27-negative patients with rheumatologist-diagnosed axSpA or other diseases (non-axSpA) from the Third Affiliated Hospital of Southern Medical University and Nanhai Hospital between January 2010 and August 2021. They were divided into a training set (n=328) for 5-fold cross-validation, an internal test set (n=72), and an independent external test set (n=54). To construct a prospective test set, we further enrolled 87 patients between September 2021 and August 2023 from the Third Affiliated Hospital of Southern Medical University. MRI techniques employed included T1-weighted (T1W), T2-weighted (T2W), and fat-suppressed (FS) sequences. We developed NegSpA-AI using a deep learning (DL) network to differentiate between axSpA and non-axSpA at admission. Furthermore, we conducted a reader study involving 4 radiologists and 2 rheumatologists to evaluate and compare the performance of independent and AI-assisted clinicians. Results: NegSpA-AI demonstrated superior performance compared to the independent junior rheumatologist (≤5 years of experience), achieving areas under the curve (AUCs) of 0.878 [95% confidence interval (CI): 0.786-0.971], 0.870 (95% CI: 0.771-0.970), and 0.815 (95% CI: 0.714-0.915) on the internal, external, and prospective test sets, respectively. The assistance of NegSpA-AI promoted discriminating accuracy, sensitivity, and specificity of independent junior radiologists by 7.4-11.5%, 1.0-13.3%, and 7.4-20.6% across the 3 test sets (all P<0.05). On the prospective test set, AI assistance also improved the diagnostic accuracy, sensitivity, and specificity of independent junior rheumatologists by 7.7%, 7.7%, and 6.9%, respectively (all P<0.01). Conclusions: The proposed NegSpA-AI effectively improves radiologists' interpretations of SIJ MRI and rheumatologists' diagnoses of HLA-B27-negative axSpA.

3.
Heliyon ; 10(15): e34907, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144918

RESUMEN

Biochar (BC) is widely utilized as a soil amendment; however, for widely distributed seasonally frozen soils, the effect of BC on soil and the optimal utilization of BC during the freeze‒thaw process are still unclear. In this study, the effects of freeze‒thaw aged biochar (FT-BC) and BC on soil properties and wheat cultivation were systematically investigated, and the underlying interaction mechanism between BC and soil was explored. The results show that FT-BC dramatically reduces the adverse effects of freeze‒thaw cycles on soil, enhances wheat growth, and increases dry matter yield by 17.5 %, which is mainly attributed to the ability of FT-BC to maintain soil structure, reduce water loss rates to below 0.20 g/h, and decrease nitrogen leaching by more than 20 % during freeze‒thaw cycles. Additionally, fresh BC had a greater effect on the fixation of cadmium than FT-BC in the soil, reducing its accumulation in wheat by 22.5 %. Multiple characterizations revealed that the freeze‒thaw process increased the porosity and specific surface area of FT-BC, providing more sites for water and nitrogen adsorption, whereas the dissolved organic matter released from fresh BC had a better ability to trap cadmium. These findings provide insights into the interactions between BC and soil components during the freeze‒thaw process and suggest the optimized utilization of fresh BC and FT-BC for different soil repair purposes.

4.
J Chem Theory Comput ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141804

RESUMEN

Intrinsically disordered proteins (IDPs) engage in various fundamental biological activities, and their behavior is of particular importance for a better understanding of the verbose but well-organized signal transduction in cells. IDPs exhibit uniquely paradoxical features with low affinity but simultaneously high specificity in recognizing their binding targets. The transcription factor p53 plays a crucial role in cancer suppression, carrying out some of its biological functions using its disordered regions, such as N-terminal transactivation domain 2 (TAD2). Exploration of the binding and unbinding processes between proteins is challenging, and the inherently disordered properties of these regions further complicate the issue. Computer simulations are a powerful tool to complement the experiments to fill gaps to explore the binding/unbinding processes between proteins. Here, we investigated the binding mechanism between p300 Taz2 and p53 TAD2 through extensive molecular dynamics (MD) simulations using the physics-based UNited RESidue (UNRES) force field with additional Go̅-like potentials. Distance restraints extracted from the NMR-resolved structures were imposed on intermolecular residue pairs to accelerate binding simulations, in which Taz2 was immobilized in a native-like conformation and disordered TAD2 was fully free. Starting from six structures with TAD2 placed at different positions around Taz2, we observed a metastable intermediate state in which the middle helical segment of TAD2 is anchored in the binding pocket, highlighting the significance of the TAD2 helix in directing protein recognition. Physics-based binding simulations show that successful binding is achieved after a series of stages, including (1) protein collisions to initiate the formation of encounter complexes, (2) partial attachment of TAD2, and finally (3) full attachment of TAD2 to the correct binding pocket of Taz2. Furthermore, machine-learning-based PathDetect-SOM was used to identify two binding pathways, the encounter complexes, and the intermediate states.

5.
Environ Res ; 262(Pt 1): 119798, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151556

RESUMEN

Algal blooms threaten water quality and ecosystem stability in aquatic habitats globally, yet dynamics regulating phytoplankton community assembly, the basis of blooms, remain poorly characterized in small water bodies. Here, we employed high-throughput sequencing to analyze drivers structuring phytoplankton across a trophic gradient of 10 small water bodies over 12 consecutive months. Cyanobacteria and Chlorophyta were identified as potential seed banks priming blooms. Temporal variation in community composition was muted in nutrient-limited waters given Cyanobacteria dominance. Environmental factors and interspecific relationships jointly governed temporal phytoplankton dynamics. Phytoplankton, exhibiting greater sensitivity, responded more rapidly than bacterioplankton to environmental and biological fluctuations. This research provides a robust bench mark characterizing planktonic successional trajectories across small water bodies varying in trophic status. Results reinforce ecological mechanisms underpinning biological control strategies to mitigate algal proliferation and inform water quality management of these ubiquitous aquatic ecosystems.

6.
J Neuroinflammation ; 21(1): 192, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095838

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2D) is associated with an increased risk of cognitive dysfunction. Angiopoietin-like protein 8 (ANGPTL8) is an important regulator in T2D, but the role of ANGPTL8 in diabetes-associated cognitive dysfunction remains unknown. Here, we explored the role of ANGPTL8 in diabetes-associated cognitive dysfunction through its interaction with paired immunoglobulin-like receptor B (PirB) in the central nervous system. METHODS: The levels of ANGPTL8 in type 2 diabetic patients with cognitive dysfunction and control individuals were measured. Mouse models of diabetes-associated cognitive dysfunction were constructed to investigate the role of ANGPTL8 in cognitive function. The cognitive function of the mice was assessed by the Barnes Maze test and the novel object recognition test, and levels of ANGPTL8, synaptic and axonal markers, and pro-inflammatory cytokines were measured. Primary neurons and microglia were treated with recombinant ANGPTL8 protein (rA8), and subsequent changes were examined. In addition, the changes induced by ANGPTL8 were validated after blocking PirB and its downstream pathways. Finally, mice with central nervous system-specific knockout of Angptl8 and PirB-/- mice were generated, and relevant in vivo experiments were performed. RESULTS: Here, we demonstrated that in the diabetic brain, ANGPTL8 was secreted by neurons into the hippocampus, resulting in neuroinflammation and impairment of synaptic plasticity. Moreover, neuron-specific Angptl8 knockout prevented diabetes-associated cognitive dysfunction and neuroinflammation. Mechanistically, ANGPTL8 acted in parallel to neurons and microglia via its receptor PirB, manifesting as downregulation of synaptic and axonal markers in neurons and upregulation of proinflammatory cytokine expression in microglia. In vivo, PirB-/- mice exhibited resistance to ANGPTL8-induced neuroinflammation and synaptic damage. CONCLUSION: Taken together, our findings reveal the role of ANGPTL8 in the pathogenesis of diabetes-associated cognitive dysfunction and identify the ANGPTL8-PirB signaling pathway as a potential target for the management of this condition.


Asunto(s)
Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Ratones Noqueados , Receptores Inmunológicos , Transducción de Señal , Animales , Ratones , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/etiología , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Proteínas Similares a la Angiopoyetina/metabolismo , Proteínas Similares a la Angiopoyetina/genética , Humanos , Masculino , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Ratones Endogámicos C57BL , Sinapsis/metabolismo , Sinapsis/patología , Sinapsis/efectos de los fármacos , Hormonas Peptídicas/metabolismo , Persona de Mediana Edad , Femenino
7.
Circ Cardiovasc Imaging ; 17(8): e016117, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39163378

RESUMEN

BACKGROUND: Coronary computed tomography angiography provides valuable information for evaluating the difficulty of chronic total occlusion (CTO) percutaneous coronary intervention. This study aimed to investigate the value of CTO plaque characteristics derived from radiomics analysis for predicting the difficulty of percutaneous coronary intervention. METHODS: Patients with CTO were retrospectively enrolled from a hospital as training and internal test sets and from the other 2 territory hospitals as external test sets. Radiomics characteristics were extracted from the CTO segment on coronary computed tomography angiography. Radiomics and combined models were developed to predict successful guidewire crossing within 30 minutes (guidewire success) of CTO percutaneous coronary intervention. Subgroup analysis was conducted to investigate the influence of potential risk factors on the radiomics model performance. RESULTS: A total of 551 patients (median, 60; interquartile range, 52.00-66.00 years, 460 men) with 565 CTO lesions were finally enrolled. In the training, internal test, and external test sets, 203 of 357, 85 of 149, and 38 of 59 CTO lesions achieved guidewire success, respectively. Six radiomics features were selected for constructing the radiomics model. In the external test set, the area under the receiver operating characteristic curve of the radiomics model was significantly higher than prior prediction models (P<0.05 for all) with the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of 0.86, 74.58%, 81.58%, and 61.90%, respectively. The performance of the radiomics model was dependent on calcification, CTO location, adjacent branch(es), and operator caseload. CONCLUSIONS: CTO characteristics revealed by radiomics analysis can be used as effective imaging biomarkers for predicting guidewire success. However, the performance of the radiomics model depends on anatomic and operator factors.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Oclusión Coronaria , Intervención Coronaria Percutánea , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Humanos , Masculino , Femenino , Oclusión Coronaria/diagnóstico por imagen , Oclusión Coronaria/cirugía , Oclusión Coronaria/terapia , Persona de Mediana Edad , Estudios Retrospectivos , Intervención Coronaria Percutánea/métodos , Anciano , Angiografía Coronaria/métodos , Enfermedad Crónica , Factores de Tiempo , Resultado del Tratamiento , Vasos Coronarios/diagnóstico por imagen , Radiómica
8.
Mol Neurobiol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088031

RESUMEN

Neuroinflammation is implicated in the onset of postoperative cognitive dysfunction (POCD), with CD33 and triggering receptor expressed on myeloid cells 2 (TREM2) playing crucial roles in immune response modulation and neuroinflammatory processes. A total of 96 aged male C57/BL6 mice (9-12 months) were randomly assigned to one of four groups, each receiving an siRNA injection into the lateral ventricle. Subsequently, the mice underwent partial hepatectomy under general anesthesia. To assess cognitive function, the Morris water maze tests were conducted both pre- and post-surgery. Following behavioral assessments, hippocampal tissues were swiftly harvested. The regulation of CD33 and TREM2 expression was achieved through siRNA in the BV2 microglia cell line. Expression levels of CD33 and TREM2 were evaluated both in vitro and in vivo using quantitative RT-PCR and western blot analyses. This study explored the impact of CD33 and TREM2 on POCD in aged mice and revealed that surgery and anesthesia increased CD33 expression, leading to spatial learning and memory impairments. Inhibiting CD33 expression via siRNA administration ameliorated cognitive deficits and mitigated the neuroinflammatory response triggered by surgery. Additionally, CD33 inhibition reversed the surgery-induced decrease in synaptic-related proteins, highlighting its role in preserving synaptic integrity. Moreover, our experiments suggest that CD33 may influence neuroinflammation and cognitive function through mechanisms involving TREM2. This is evidenced by the suppression of pro-inflammatory cytokines following CD33 knockdown in microglia and the reversal of these effects when both CD33 and TREM2 are concurrently knocked down. These findings imply that CD33 might promote neuroinflammation by inhibiting TREM2. This study highlights the potential of targeting CD33 as a promising therapeutic strategy for preventing and treating POCD. It provides valuable insights into the intricate mechanisms underlying cognitive dysfunction following surgical procedures.

9.
Phytomedicine ; 133: 155916, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39094440

RESUMEN

BACKGROUND: Hepatic fibrosis (HF) is an essential stage in the progression of different chronic liver conditions to cirrhosis and even hepatocellular carcinoma. The activation of hepatic stellate cells (HSCs) plays a crucial role in the progression of HF. IFN- γ/Smad7 pathway can inhibit HSCs activation, while TGF-ß1/CUGBP1 pathway can inhibit IFN-γ/Smad7 pathway transduction and promote HSCs activation. Thus, inhibiting the TGF-ß1/CUGBP1 pathway and activating the IFN-γ/Smad7 pathway reverses HSCs activation and inhibits HF. Jiawei Taohe Chengqi Decoction (JTCD) was derived from the Taohe Chengqi Tang in the ancient Chinese medical text titled "Treatise on Febrile Diseases". We found several anti-HF components in JTCD including ginsenoside Rb1 and others, but the specific mechanism of anti-HF in JTCD is not clear. PURPOSE: To elucidate the specific mechanism by which JTCD reverses HF by inhibiting the activation of HSCs, and to establish a scientific foundation for treating HF with Traditional Chinese medicine (TCM). METHODS: We constructed a CCl4-induced mice HF model in vivo and activated human hepatic stellate cell line (LX-2) with TGF-ß1 in vitro, after which they were treated with JTCD and the corresponding inhibitors. We examined the expression of pivotal molecules in the two pathways mentioned above by immunofluorescence staining, Western blotting and RT-PCR. RESULTS: JTCD attenuated liver injury and reduced serum ALT and AST levels in mice. In addition, JTCD attenuated CCl4-induced HF by decreasing the expression of α-SMA, COL1A1 and other markers of HSCs activation in mice liver tissue. Moreover, JTCD effectively suppressed the levels of TGF-ß1, p-Smad3, p-p38MAPK, p-ATF2, and CUGBP1 in vivo and in vitro and upregulated the levels of IFN-γ, p-STAT1, and Smad7. Mechanically, after using the inhibitors of both pathways in vitro, we found that JTCD inhibited the activation of HSCs by restoring the balance of the TGF-ß1/CUGBP1 and IFN-γ/Smad7 pathways. CONCLUSION: We demonstrated that JTCD inhibited HSCs activation and reversed HF by inhibiting the TGF-ß1/CUGBP1 signalling pathway and upregulating the IFN-γ/Smad7 signalling pathway. Moreover, we have identified specific links where JTCD interferes with both pathways to inhibit HSCs activation. JTCD is an effective candidate for the clinical treatment of HF.

10.
Mol Immunol ; 174: 11-17, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128414

RESUMEN

Microglia play a major role in the immune defense system of the central nervous system and are activated in many neurological diseases. The immunomodulatory cytokine interleukin (IL)-15 is known to be involved in microglia response and inflammatory factors release. Neoprzewaquinone A (NEO) is an active compound isolated from Salvia miltiorrhiza Bunge. Our previous study has shown that NEO significantly inhibit the proliferation of IL-15-treated Mo7e cells. However, the role of NEO in the structure and function of IL-15-treated human microglial cells (HMC3) remains unclear. Thus, our study aimed to quantitatively analyze the beneficial effects of NEO on HMC3 cells following IL-15 treatment. The cell viability, phagocytosis, migration and energy metabolism were evaluated by Cell Counting Kit-8 (CCK8), scratch assay, pHrodo™ Red Zymosan BioParticles™ Conjugate, and Agilent Seahorse XF Cell Mito Test. Cephalothin (CEP) was selected as a positive drug because it has obvious inhibitory effect on IL-15 and IL-15Rɑ. Our results showed that IL-15 stimulated the proliferation, migration and phagocytosis of HMC3 cells in a time-dependent manner. Interestingly, NEO exhibited significant suppressive effects on these IL-15-induced changes, which were even superior to those observed with the CEP. Moreover, IL-15 treatment did not significantly alter energy metabolism, including glycolysis and mitochondrial respiration. NEO and CEP alone effectively reduced glycolysis, non-mitochondrial respiration, basal respiration, ATP turnover, respiration capacity, and H+ leak in HMC3 cells. Furthermore, NEO displayed a partial regulatory effect on mitochondrial function in IL-15-treated HMC3 cells. Our study confirms the effectively inhibition of NEO on IL-15-induced microglial activation and provides valuable insights into the therapeutic prospects of NEO in neuropsychiatric disorders associated with IL-15 and microglia.

11.
ACS Appl Mater Interfaces ; 16(32): 42321-42331, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088694

RESUMEN

Aqueous rechargeable batteries are regarded as one of the most reliable solutions for electrochemical energy storage, and ion (e.g., H+ or OH-) transport is essential for their electrochemical performance. However, modeling and numerical simulations often fall short of depicting the actual ion transport characteristics due to deviations in model assumptions from reality. Experimental methods, including laser interferometry, Raman, and nuclear magnetic resonance imaging, are limited by the complexity of the system and the restricted detection of ions, making it difficult to detect specific ions such as H+ and OH-. Herein, in situ visualization of ion transport is achieved by innovatively introducing laser scanning confocal microscopy. Taking neutral Zn-air batteries as an example and using a pH-sensitive probe, real-time dynamic pH changes associated with ion transport processes are observed during battery operation. The results show that after immersion in the zinc sulfate electrolyte, the pH near the Zn electrode changes significantly and pulsation occurs, which demonstrates the intense self-corrosion hydrogen evolution reaction and the periodic change in the reaction intensity. In contrast, the change in the pH of the galvanized electrode plate is weak, proving its significant corrosion inhibition effect. For the air electrode, the heterogeneity of ion transport during the discharging and charging process is presented. With an increase of the current density, the ion transport characteristics gradually evolve from diffusion dominance to convection-diffusion codominance, revealing the importance of convection in the ion transport process inside batteries. This method opens up a new approach of studying ion transport inside batteries, guiding the design for performance enhancement.

12.
Discov Oncol ; 15(1): 348, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134820

RESUMEN

This review explores the intricate roles of metal ions-iron, copper, zinc, and selenium-in glioma pathogenesis and immune evasion. Dysregulated metal ion metabolism significantly contributes to glioma progression by inducing oxidative stress, promoting angiogenesis, and modulating immune cell functions. Iron accumulation enhances oxidative DNA damage, copper activates hypoxia-inducible factors to stimulate angiogenesis, zinc influences cell proliferation and apoptosis, and selenium modulates the tumor microenvironment through its antioxidant properties. These metal ions also facilitate immune escape by upregulating immune checkpoints and secreting immunosuppressive cytokines. Targeting metal ion pathways with therapeutic strategies such as chelating agents and metalloproteinase inhibitors, particularly in combination with conventional treatments like chemotherapy and immunotherapy, shows promise in improving treatment efficacy and overcoming resistance. Future research should leverage advanced bioinformatics and integrative methodologies to deepen the understanding of metal ion-immune interactions, ultimately identifying novel biomarkers and therapeutic targets to enhance glioma management and patient outcomes.

13.
J Food Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150691

RESUMEN

A novel and facile surface molecularly imprinted polymer coated on magnetic chitosan (Fe3O4@CS@MIP) was fabricated for the selective recognition and enrichment of naringin (NRG). The Fe3O4@CS@MIP was prepared based on covalent-noncovalent synergistic imprinting strategies, utilizing 4-vinyl phenyl boric acid as covalent functional monomer, deep eutectic solvent (choline chloride/methacrylic acid [ChCl/MAA]) as non-covalent functional monomer and Fe3O4@CS nanoparticles as the magnetic support. The obtained Fe3O4@CS@MIP exhibited a uniform morphology, excellent crystallinity, outstanding magnetic properties, and high surface area. Owing to the double recognition abilities, the resultant polymer showed exceptional binding performance and rapid mass transfer in phosphate buffer (pH 7.0). The maximum binding amount of Fe3O4@CS@MIP was found to be 15.08 mg g-1, and the equilibrium adsorption could be achieved within 180 min. Moreover, they also exhibited stronger selectivity for NRG and satisfactory reusability, with only 11.0% loss after five adsorption-desorption cycles. Additionally, the Fe3O4@CS@MIP, serving as an adsorbent, presented practical application potential in the separation and enrichment of NRG from pummelo peel, with extraction efficiency in the range of 79.53% to 84.63%. This work provided a new strategy for improving the performance of MIP and contributed an attractive option for the extraction of NRG in complex samples.

14.
J Hazard Mater ; 477: 135276, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088953

RESUMEN

Nitrate-containing wastewaters have been recognized as an important source for recovering valuable ammonia. This work targets integrating a series of transition metals (M = Fe, Co, Ni, and Zn) onto Cu crystallites through a layered-plating method. The strategy to promote the nitrate reduction reaction (NO3-RR) involves tuning M surfaces in specific ratios for the hydrogenation of nitrogenous species on MxCu1-x electrodes. Electrochemical analysis and operando Raman spectra identified that a solid-state Cu2O-to-Cu0 transition acted as the primary mediator, while its high corrosion resistance protected the M metals or metal oxides from inactivation in nitrate-to-ammonia pathways. Among bimetals, FeCu was the best combination, with the order of performance in constant potential electrolysis, Fe0.36Cu0.64 > Ni0.73Cu0.27 > Co0.34Cu0.66 > Zn0.64Cu0.36. The collaboration of Cu and M in deoxygenating nitrate and subsequently hydrogenating NOx at respective overpotentials is key to enhancing ammonia yield. Nitrate removal (96 %), NH3 selectivity (93 %), and Faradaic efficiency (92 %) were optimized on Fe0.36Cu0.64 electrode at -0.6 V (vs. RHE). A steady yield as high as 14,080 µg h-1 mg-1 was achieved at 30 mA cm-2 using a real water sample (NO3- ∼ 500 mg-N L-1, pH 4) as the input stream, continuously operated for 96 h.

15.
Diagnostics (Basel) ; 14(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39125563

RESUMEN

The severity of periodontitis can be analyzed by calculating the loss of alveolar crest (ALC) level and the level of bone loss between the tooth's bone and the cemento-enamel junction (CEJ). However, dentists need to manually mark symptoms on periapical radiographs (PAs) to assess bone loss, a process that is both time-consuming and prone to errors. This study proposes the following new method that contributes to the evaluation of disease and reduces errors. Firstly, innovative periodontitis image enhancement methods are employed to improve PA image quality. Subsequently, single teeth can be accurately extracted from PA images by object detection with a maximum accuracy of 97.01%. An instance segmentation developed in this study accurately extracts regions of interest, enabling the generation of masks for tooth bone and tooth crown with accuracies of 93.48% and 96.95%. Finally, a novel detection algorithm is proposed to automatically mark the CEJ and ALC of symptomatic teeth, facilitating faster accurate assessment of bone loss severity by dentists. The PA image database used in this study, with the IRB number 02002030B0 provided by Chang Gung Medical Center, Taiwan, significantly reduces the time required for dental diagnosis and enhances healthcare quality through the techniques developed in this research.

16.
Adv Healthc Mater ; : e2401555, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039990

RESUMEN

The intricate nature of pain classification and mechanism constantly affects the recovery of diseases and the well-being of patients. Key medical challenges persist in devising effective pain management strategies. Therefore, a comprehensive review of relevant methods and research advancements in pain management is conducted. This overview covers the main categorization of pain and its developmental mechanism, followed by a review of pertinent research and techniques for managing pain. These techniques include commonly prescribed medications, invasive procedures, and noninvasive physical therapy methods used in rehabilitation medicine. Additionally, for the first time, a systematic summary of the utilization of responsive biomaterials in pain management is provided, encompassing their response to physical stimuli such as ultrasound, magnetic fields, electric fields, light, and temperature, as well as changes in the physiological environment like reactive oxygen species (ROS) and pH. Even though the application of responsive biomaterials in pain management remains limited and at a fundamental level, recent years have seen the examination and debate of relevant research findings. These profound discussions aim to provide trends and directions for future research in pain management.

17.
Ann Hematol ; 103(8): 2827-2836, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969929

RESUMEN

Wilms tumor 1 (WT1) gene mutations are infrequent in myelodysplastic syndrome (MDS), but MDS with WT1 mutations (WT1mut) is considered high risk for acute myeloid leukemia (AML) transformation. The influence of WT1 mutations in patients with MDS after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is unclear. We performed a retrospective analysis of 136 MDS with excess blasts 2 (MDS-EB2) patients with available WT1 status who underwent their first allo-HSCT between 2017 and 2022 in our center. There were 20 (20/136, 15%) cases in the WT1mut group and 116 (116/136, 85%) cases in the WT1 wild-type (WT1wt) group. WT1mut patients had a higher 2-year cumulative incidence of relapse (CIR) than WT1wt cases (26.2% vs. 9.4%, p = 0.037) after allo-HSCT. Multivariate analysis of relapse showed that WT1 mutations (HR, 6.0; p = 0.002), TP53 mutations (HR, 4.2; p = 0.021), and ≥ 5% blasts in bone marrow (BM) at transplantation (HR, 6.6; p = 0.004) were independent risk factors for relapse. Patients were stratified into three groups according to the risk factors. Two-year CIR differed significantly in high-, intermediate-, and low-risk groups (31.8%, 11.6%, and 0%, respectively). Hence, WT1 mutations may be related to post-transplant relapse in patients with MDS-EB2, which warrants further study.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mutación , Síndromes Mielodisplásicos , Proteínas WT1 , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Aloinjertos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/etiología , Recurrencia , Estudios Retrospectivos , Proteínas WT1/genética
18.
Langmuir ; 40(31): 16400-16418, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39049446

RESUMEN

This study describes the preparation of Ni-P-Cr3C2 composite coatings using pulsed electrodeposition, with varying Cr3C2 concentrations (0, 1, 2, 3, 4, and 5 g/L). Subsequently, the Ni-P-Cr3C2 composite coatings are heat-treated at different temperatures (200, 400, and 600 °C) using the characteristic of Cr3C2 oxidizing to Cr2O3 at high temperatures. The Ni-P coatings, Ni-P-Cr3C2 composite coatings, and heat-treated-state Ni-P-Cr3C2 composite coatings are compared and discussed. The results show that the hardness, wear resistance, and corrosion resistance of the composite coatings are optimized when the Cr3C2 content is 3 g/L and the heat-treatment temperature is 400 °C. This is due to the presence of oxides such as Cr2O3 on the surface of the composite coatings after heat treatment at 400 °C. By efficiently enhancing the coating's densification to the substrate, these oxides raise the composite coating's resistance to corrosion and wear. The Ni-P-Cr3C2 composite coating in its heat-treated makeup at 400 °C is found to have long-term corrosion resistance in the 3.5 wt % NaCl solution immersion test. This study provides a new idea in the field of corrosion.

19.
Sci Total Environ ; 948: 174903, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038683

RESUMEN

Agricultural drought (AD) is the main environmental factor affecting vegetation productivity (VP) in the Yellow River Basin (YRB). In recent years, the nonlinear effects of AD on VP in the YRB have attracted much attention. However, it is still unclear whether fluctuating AD will have complex nonlinear effects on VP in the YRB, and there are scant previous studies at large scale on whether there is a threshold for nonlinear effects of AD on VP in the YRB. Therefore, this study used a newly developed agricultural drought index to explore nonlinear effects on VP revealing the nonlinear effects of AD on VP in the YRB. First, we developed a kernel temperature vegetation drought index (kTVDI) based on kernel normalized difference vegetation index (kNDVI) and land surface temperature data to study the spatiotemporal variation of AD in the YRB. Second, we used GPP data from solar-induced chlorophyll fluorescence inversion as an indicator to explore the spatiotemporal variation of VP in the YRB. Finally, we used several statistical indicators and a distributed lag nonlinear model (DLNM) to analyze the nonlinear effect of AD on VP in the YRB. The results showed that AD decreased significantly during 2000-2020, mainly in the southeast of the Loess Plateau, while GPP increased significantly in 80.93 % of the YRB. Meanwhile, moderate and severe AD stress limited VP growth, with the negative effects gradually decreasing, while mild AD had an increasingly positive promoting effect on VP. AD stress resulted in a VP decrease of 69.78 %, and severe AD stress resulted in a VP decrease of 65.52 %, mainly distributed in the northern Loess and Ordos Plateau. AD had significant nonlinear effects on VP. The effects of moderate and severe AD on the sustained nonlinear lag of vegetation were more obvious, and those of moderate and severe AD on the nonlinear lag of VP were the largest when the lag was approximately 1 month and 7 months. The effect of AD on the nonlinear hysteresis of VP in YRB was significantly different under different vegetation types, and forests were more able to withstand longer and more severe droughts than grasslands and croplands. The results of the study provide a theoretical basis for evaluating AD and analyzing the nonlinear impact of AD on VP. This will provide scientific basis for studying the mechanism of drought effect on vegetation in other regions.

20.
Biosens Bioelectron ; 262: 116570, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39018980

RESUMEN

Molecularly imprinted polymers (MIP) have been widely owing to their specificity, however, their singular structure imposes limitations on their performance. Current enhancement methods, such as doping with inorganic nanomaterials or introducing various functional monomers, are limited and single, indicating that MIP performances require further advancement. In this work, a dual-modification approach that integrates both conductive inorganic nanomaterials and diverse bifunctional monomers was proposed to develop a multifunctional MIP-based electrochemical (MMIP-EC) sensor for diuron (DU) detection. The MMIP was synthesized through a one-step electrochemical copolymerization of silver nanowires (AgNWs), o-phenylenediamine (O-PD), and 3,4-ethylenedioxythiophene (EDOT). DU molecules could conduct fluent electron transfer within the MMIP layer through the interaction between anchored AgNWs and bifunctional monomers, and the abundant recognition sites and complementary cavity shapes ensured that the imprinted cavities exhibit high specificity. The current intensity amplified by the two modification strategies of MMIP (3.7 times) was significantly higher than the sum of their individual values (3.2 times), exerting a synergistic effect. Furthermore, the adsorption performance of the MMIP was characterized by examining the kinetics and isotherms of the adsorption process. Under optimal conditions, the MMIP-EC sensor exhibits a wide linear range (0.2 ng/mL to 10 µg/mL) for DU detection, with a low detection limit of 89 pg/mL and excellent selectivity (an imprinted factor of 10.4). In summary, the present study affords innovative perspectives for the fabrication of MIP-EC sensor with superior analytical performance.


Asunto(s)
Técnicas Biosensibles , Diurona , Técnicas Electroquímicas , Límite de Detección , Polímeros Impresos Molecularmente , Nanocables , Plata , Nanocables/química , Técnicas Biosensibles/métodos , Plata/química , Técnicas Electroquímicas/métodos , Polímeros Impresos Molecularmente/química , Diurona/análisis , Diurona/aislamiento & purificación , Impresión Molecular/métodos , Polímeros/química , Fenilendiaminas/química , Herbicidas/análisis , Herbicidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA