Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 16(7): e0252048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264955

RESUMEN

Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.


Asunto(s)
Neoplasias Meníngeas/genética , Meningioma/genética , Neurilemoma/genética , Neurofibromina 2/deficiencia , Neurofibromina 2/genética , Compuestos Organofosforados/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Proliferación Celular , Humanos , Mutación , Neurilemoma/patología
2.
Nat Med ; 27(1): 165-173, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33442015

RESUMEN

Neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNs) are progressive, multicellular neoplasms that cause morbidity and may transform to sarcoma. Treatment of Nf1fl/fl;Postn-Cre mice with cabozantinib, an inhibitor of multiple tyrosine kinases, caused a reduction in PN size and number and differential modulation of kinases in cell lineages that drive PN growth. Based on these findings, the Neurofibromatosis Clinical Trials Consortium conducted a phase II, open-label, nonrandomized Simon two-stage study to assess the safety, efficacy and biologic activity of cabozantinib in patients ≥16 years of age with NF1 and progressive or symptomatic, inoperable PN ( NCT02101736 ). The trial met its primary outcome, defined as ≥25% of patients achieving a partial response (PR, defined as ≥20% reduction in target lesion volume as assessed by magnetic resonance imaging (MRI)) after 12 cycles of therapy. Secondary outcomes included adverse events (AEs), patient-reported outcomes (PROs) assessing pain and quality of life (QOL), pharmacokinetics (PK) and the levels of circulating endothelial cells and cytokines. Eight of 19 evaluable (42%) trial participants achieved a PR. The median change in tumor volume was 15.2% (range, +2.2% to -36.9%), and no patients had disease progression while on treatment. Nine patients required dose reduction or discontinuation of therapy due to AEs; common AEs included gastrointestinal toxicity, hypothyroidism, fatigue and palmar plantar erythrodysesthesia. A total of 11 grade 3 AEs occurred in eight patients. Patients with PR had a significant reduction in tumor pain intensity and pain interference in daily life but no change in global QOL scores. These data indicate that cabozantinib is active in NF1-associated PN, resulting in tumor volume reduction and pain improvement.


Asunto(s)
Anilidas/uso terapéutico , Neurofibroma Plexiforme/tratamiento farmacológico , Neurofibromatosis 1/tratamiento farmacológico , Piridinas/uso terapéutico , Adolescente , Adulto , Anilidas/efectos adversos , Anilidas/farmacocinética , Animales , Modelos Animales de Enfermedad , Femenino , Genes de Neurofibromatosis 1 , Humanos , Masculino , Ratones , Ratones Mutantes , Neurofibroma Plexiforme/genética , Neurofibroma Plexiforme/patología , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Dimensión del Dolor , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/efectos adversos , Piridinas/farmacocinética , Calidad de Vida , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Investigación Biomédica Traslacional , Adulto Joven
4.
JCI Insight ; 5(20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32960816

RESUMEN

Schwannomas are tumors of the Schwann cells that cause chronic pain, numbness, and potentially life-threatening impairment of vital organs. Despite the identification of causative genes, including NF2 (Merlin), INI1/SMARCB1, and LZTR1, the exact molecular mechanism of schwannoma development is still poorly understood. Several studies have identified Merlin as a key regulator of the Hippo, MAPK, and PI3K signaling pathways; however, definitive evidence demonstrating the importance of these pathways in schwannoma pathogenesis is absent. Here, we provide direct genetic evidence that dysregulation of the Hippo pathway in the Schwann cell lineage causes development of multiple schwannomas in mice. We found that canonical Hippo signaling through the effectors YAP/TAZ is required for schwannomagenesis and that MAPK signaling modifies schwannoma formation. Furthermore, cotargeting YAP/TAZ transcriptional activity and MAPK signaling demonstrated a synergistic therapeutic effect on schwannomas. Our new model provides a tractable platform to dissect the molecular mechanisms underpinning schwannoma formation and the role of combinatorial targeted therapy in schwannoma treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Pérdida de Heterocigocidad/genética , Neurilemoma/genética , Neurofibromina 2/genética , Animales , Regulación Neoplásica de la Expresión Génica/genética , Factor de Crecimiento de Hepatocito/genética , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Neurilemoma/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteína SMARCB1/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP , Proteínas ras/genética
5.
J Biol Chem ; 295(29): 9948-9958, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32471868

RESUMEN

Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 tumor suppressor gene. NF1 encodes neurofibromin, a GTPase-activating protein for RAS proto-oncogene GTPase (RAS). Plexiform neurofibromas are a hallmark of NF1 and result from loss of heterozygosity of NF1 in Schwann cells, leading to constitutively activated p21RAS. Given the inability to target p21RAS directly, here we performed an shRNA library screen of all human kinases and Rho-GTPases in a patient-derived NF1-/- Schwann cell line to identify novel therapeutic targets to disrupt PN formation and progression. Rho family members, including Rac family small GTPase 1 (RAC1), were identified as candidates. Corroborating these findings, we observed that shRNA-mediated knockdown of RAC1 reduces cell proliferation and phosphorylation of extracellular signal-regulated kinase (ERK) in NF1-/- Schwann cells. Genetically engineered Nf1flox/flox;PostnCre+ mice, which develop multiple PNs, also exhibited increased RAC1-GTP and phospho-ERK levels compared with Nf1flox/flox;PostnCre- littermates. Notably, mice in which both Nf1 and Rac1 loci were disrupted (Nf1flox/floxRac1flox/flox;PostnCre+) were completely free of tumors and had normal phospho-ERK activity compared with Nf1flox/flox ;PostnCre+ mice. We conclude that the RAC1-GTPase is a key downstream node of RAS and that genetic disruption of the Rac1 allele completely prevents PN tumor formation in vivo in mice.


Asunto(s)
Técnicas de Silenciamiento del Gen , Neoplasias Primarias Secundarias , Neurofibroma Plexiforme , Neurofibromatosis 1 , Neuropéptidos/deficiencia , Proteína de Unión al GTP rac1/deficiencia , Animales , Ratones , Ratones Noqueados , Neoplasias Primarias Secundarias/enzimología , Neoplasias Primarias Secundarias/genética , Neoplasias Primarias Secundarias/patología , Neoplasias Primarias Secundarias/prevención & control , Neurofibroma Plexiforme/enzimología , Neurofibroma Plexiforme/genética , Neurofibroma Plexiforme/prevención & control , Neurofibromatosis 1/enzimología , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromina 1/deficiencia , Neurofibromina 1/metabolismo , Neuropéptidos/metabolismo , Proto-Oncogenes Mas , Proteína de Unión al GTP rac1/metabolismo
6.
Hum Mol Genet ; 28(16): 2752-2762, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31091306

RESUMEN

Plexiform neurofibroma (PN) tumors are a hallmark manifestation of neurofibromatosis type 1 (NF1) that arise in the Schwann cell (SC) lineage. NF1 is a common heritable cancer predisposition syndrome caused by germline mutations in the NF1 tumor suppressor, which encodes a GTPase-activating protein called neurofibromin that negatively regulates Ras proteins. Whereas most PN are clinically indolent, a subset progress to atypical neurofibromatous neoplasms of uncertain biologic potential (ANNUBP) and/or to malignant peripheral nerve sheath tumors (MPNSTs). In small clinical series, loss of 9p21.3, which includes the CDKN2A locus, has been associated with the genesis of ANNUBP. Here we show that the Cdkn2a alternate reading frame (Arf) serves as a gatekeeper tumor suppressor in mice that prevents PN progression by inducing senescence-mediated growth arrest in aberrantly proliferating Nf1-/- SC. Conditional ablation of Nf1 and Arf in the neural crest-derived SC lineage allows escape from senescence, resulting in tumors that accurately phenocopy human ANNUBP and progress to MPNST with high penetrance. This animal model will serve as a platform to study the clonal development of ANNUBP and MPNST and to identify new therapies to treat existing tumors and to prevent disease progression.


Asunto(s)
Transformación Celular Neoplásica/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Neurofibroma/genética , Neurofibroma/patología , Neurofibromatosis 1/genética , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Senescencia Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Genotipo , Xenoinjertos , Humanos , Inmunohistoquímica , Ratones , Mutación , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/metabolismo , Neoplasias de la Vaina del Nervio/patología , Neurofibroma/metabolismo , Neurofibroma/mortalidad , Neurofibromatosis 1/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Proteínas ras/metabolismo
7.
Hum Mol Genet ; 28(4): 572-583, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30335132

RESUMEN

Schwannomas are common, highly morbid and medically untreatable tumors that can arise in patients with germ line as well as somatic mutations in neurofibromatosis type 2 (NF2). These mutations most commonly result in the loss of function of the NF2-encoded protein, Merlin. Little is known about how Merlin functions endogenously as a tumor suppressor and how its loss leads to oncogenic transformation in Schwann cells (SCs). Here, we identify nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-inducing kinase (NIK) as a potential drug target driving NF-κB signaling and Merlin-deficient schwannoma genesis. Using a genomic approach to profile aberrant tumor signaling pathways, we describe multiple upregulated NF-κB signaling elements in human and murine schwannomas, leading us to identify a caspase-cleaved, proteasome-resistant NIK kinase domain fragment that amplifies pathogenic NF-κB signaling. Lentiviral-mediated transduction of this NIK fragment into normal SCs promotes proliferation, survival, and adhesion while inducing schwannoma formation in a novel in vivo orthotopic transplant model. Furthermore, we describe an NF-κB-potentiated hepatocyte growth factor (HGF) to MET proto-oncogene receptor tyrosine kinase (c-Met) autocrine feed-forward loop promoting SC proliferation. These innovative studies identify a novel signaling axis underlying schwannoma formation, revealing new and potentially druggable schwannoma vulnerabilities with future therapeutic potential.


Asunto(s)
Neurilemoma/genética , Neurofibromatosis 2/genética , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Comunicación Autocrina/genética , Carcinogénesis/genética , Caspasa 1/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Factor de Crecimiento de Hepatocito/genética , Humanos , Ratones , Terapia Molecular Dirigida , FN-kappa B/genética , Neurilemoma/complicaciones , Neurilemoma/tratamiento farmacológico , Neurilemoma/patología , Neurofibromatosis 2/complicaciones , Neurofibromatosis 2/tratamiento farmacológico , Neurofibromatosis 2/patología , Complejo de la Endopetidasa Proteasomal/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-met/genética , Células de Schwann , Transducción de Señal/genética , Quinasa de Factor Nuclear kappa B
8.
Oncotarget ; 9(1): 718-725, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29416648

RESUMEN

Mutations in the tumor suppressor gene NF2 lead to Neurofibromatosis type 2 (NF2), a tumor predisposition syndrome characterized by the development of schwannomas, including bilateral vestibular schwannomas with complete penetrance. Recent work has implicated the importance of COX-2 in schwannoma growth. Using a genetically engineered murine model of NF2, we demonstrate that selective inhibition of COX-2 with celecoxib fails to prevent the spontaneous development of schwannomas or sensorineural hearing loss in vivo, despite elevated expression levels of COX-2 in Nf2-deficient tumor tissue. These results suggest that COX-2 is nonessential to schwannomagenesis and that the proposed tumor suppressive effects of NSAIDs on schwannomas may occur through COX-2 independent mechanisms.

9.
Endocrinology ; 158(9): 2722-2740, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637206

RESUMEN

Combining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity. We addressed whether combining a sustained anabolic response with an anticatabolic results in superior bone acquisition compared with PTH monotherapy. Additionally, we inquired whether Nmp4 interferes with anticatabolic efficacy. Wild-type and Nmp4-/- mice were ovariectomized at 12 weeks of age, followed by therapy regimens, administered from 16 to 24 weeks, and included individually or combined PTH, alendronate (ALN), zoledronate (ZOL), and raloxifene (RAL). Anabolic therapeutic efficacy generally corresponded with PTH + RAL = PTH + ZOL > PTH + ALN = PTH > vehicle control. Loss of Nmp4 enhanced femoral trabecular bone increases under PTH + RAL and PTH + ZOL. RAL and ZOL promoted bone restoration, but unexpectedly, loss of Nmp4 boosted RAL-induced increases in femoral trabecular bone. The combination of PTH, RAL, and loss of Nmp4 significantly increased bone marrow osteoprogenitor number, but did not affect adipogenesis or osteoclastogenesis. RAL, but not ZOL, increased osteoprogenitors in both genotypes. Nmp4 status did not influence bone serum marker responses to treatments, but Nmp4-/- mice as a group showed elevated levels of the bone formation marker osteocalcin. We conclude that the heightened osteoanabolism of the Nmp4-/- skeleton enhances the effectiveness of diverse osteoporosis treatments, in part by increasing hyperanabolic osteoprogenitors. Nmp4 provides a promising target pathway for identifying barriers to pharmacologically induced bone formation.


Asunto(s)
Huesos/efectos de los fármacos , Huesos/metabolismo , Difosfonatos/administración & dosificación , Imidazoles/administración & dosificación , Osteoporosis/tratamiento farmacológico , Hormona Paratiroidea/administración & dosificación , Clorhidrato de Raloxifeno/administración & dosificación , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/genética , Resorción Ósea/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Femenino , Ratones , Ratones Noqueados , Proteínas Asociadas a Matriz Nuclear/genética , Osteoporosis/genética , Osteoporosis/patología , Factores de Transcripción/genética , Ácido Zoledrónico
10.
Haematologica ; 102(6): 1017-1027, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28341737

RESUMEN

Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation.


Asunto(s)
Médula Ósea/patología , Microambiente Celular , Anemia de Fanconi/patología , Animales , Huesos/anomalías , Huesos/fisiopatología , Linaje de la Célula , Anemia de Fanconi/fisiopatología , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas/patología , Ratones , Ratones Noqueados
11.
Sci Adv ; 3(1): e1601602, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28116354

RESUMEN

ASXL1 is frequently mutated in a spectrum of myeloid malignancies with poor prognosis. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice; however, the underlying molecular mechanisms remain unclear. We report that ASXL1 interacts with the cohesin complex, which has been shown to guide sister chromatid segregation and regulate gene expression. Loss of Asxl1 impairs the cohesin function, as reflected by an impaired telophase chromatid disjunction in hematopoietic cells. Chromatin immunoprecipitation followed by DNA sequencing data revealed that ASXL1, RAD21, and SMC1A share 93% of genomic binding sites at promoter regions in Lin-cKit+ (LK) cells. We have shown that loss of Asxl1 reduces the genome binding of RAD21 and SMC1A and alters the expression of ASXL1/cohesin target genes in LK cells. Our study underscores the ASXL1-cohesin interaction as a novel means to maintain normal sister chromatid separation and regulate gene expression in hematopoietic cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Regulación de la Expresión Génica/fisiología , Hematopoyesis/fisiología , Proteínas Represoras/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Represoras/genética , Telofase/fisiología , Cohesinas
12.
Stem Cell Reports ; 6(6): 914-925, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27237378

RESUMEN

De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development.


Asunto(s)
Adipocitos/metabolismo , Células de la Médula Ósea/metabolismo , Craneosinostosis/genética , Discapacidad Intelectual/genética , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Proteínas Represoras/genética , Adipocitos/patología , Animales , Células de la Médula Ósea/patología , Diferenciación Celular , Proliferación Celular , Craneosinostosis/metabolismo , Craneosinostosis/patología , Modelos Animales de Enfermedad , Expresión Génica , Prueba de Complementación Genética , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Lentivirus/genética , Lentivirus/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Osteoblastos/patología , Osteogénesis/genética , Cultivo Primario de Células , Proteínas Represoras/deficiencia , Análisis de Secuencia de ARN , Transducción Genética
13.
Mol Endocrinol ; 29(9): 1269-85, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26244796

RESUMEN

PTH is an osteoanabolic for treating osteoporosis but its potency wanes. Disabling the transcription factor nuclear matrix protein 4 (Nmp4) in healthy, ovary-intact mice enhances bone response to PTH and bone morphogenetic protein 2 and protects from unloading-induced osteopenia. These Nmp4(-/-) mice exhibit expanded bone marrow populations of osteoprogenitors and supporting CD8(+) T cells. To determine whether the Nmp4(-/-) phenotype persists in an osteoporosis model we compared PTH response in ovariectomized (ovx) wild-type (WT) and Nmp4(-/-) mice. To identify potential Nmp4 target genes, we performed bioinformatic/pathway profiling on Nmp4 chromatin immunoprecipitation sequencing (ChIP-seq) data. Mice (12 w) were ovx or sham operated 4 weeks before the initiation of PTH therapy. Skeletal phenotype analysis included microcomputed tomography, histomorphometry, serum profiles, fluorescence-activated cell sorting and the growth/mineralization of cultured WT and Nmp4(-/-) bone marrow mesenchymal stem progenitor cells (MSPCs). ChIP-seq data were derived using MC3T3-E1 preosteoblasts, murine embryonic stem cells, and 2 blood cell lines. Ovx Nmp4(-/-) mice exhibited an improved response to PTH coupled with elevated numbers of osteoprogenitors and CD8(+) T cells, but were not protected from ovx-induced bone loss. Cultured Nmp4(-/-) MSPCs displayed enhanced proliferation and accelerated mineralization. ChIP-seq/gene ontology analyses identified target genes likely under Nmp4 control as enriched for negative regulators of biosynthetic processes. Interrogation of mRNA transcripts in nondifferentiating and osteogenic differentiating WT and Nmp4(-/-) MSPCs was performed on 90 Nmp4 target genes and differentiation markers. These data suggest that Nmp4 suppresses bone anabolism, in part, by regulating IGF-binding protein expression. Changes in Nmp4 status may lead to improvements in osteoprogenitor response to therapeutic cues.


Asunto(s)
Resorción Ósea/tratamiento farmacológico , Linfocitos T CD8-positivos/citología , Proteínas Asociadas a Matriz Nuclear/genética , Osteoporosis/tratamiento farmacológico , Hormona Paratiroidea/uso terapéutico , Factores de Transcripción/genética , Animales , Densidad Ósea/efectos de los fármacos , Enfermedades Óseas Metabólicas/prevención & control , Proteína Morfogenética Ósea 2/metabolismo , Resorción Ósea/genética , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Mapeo Cromosómico , Células Madre Embrionarias/citología , Femenino , Terapia Genética , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis/efectos de los fármacos , Osteoporosis/genética , Ovariectomía , Ovario/cirugía
14.
Int J Mol Sci ; 16(6): 12345-59, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26039236

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1(+/-)) mice. Nf1(+/-) MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1(+/-) MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1(+/-) MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs.


Asunto(s)
Haploinsuficiencia , Sistema de Señalización de MAP Quinasas , Células Madre Mesenquimatosas/fisiología , Neurofibromina 1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Actinas/metabolismo , Animales , Benzamidas/farmacología , Adhesión Celular , Movimiento Celular , Células Cultivadas , Cromonas/farmacología , Difenilamina/análogos & derivados , Difenilamina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Morfolinas/farmacología , Neurofibromina 1/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas ras/metabolismo
15.
J Bone Miner Res ; 30(10): 1840-51, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25917016

RESUMEN

Although nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras-dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations.


Asunto(s)
Haploinsuficiencia , Células Progenitoras Mieloides , Neurofibromina 1 , Osteoclastos , Osteólisis , Osteoporosis , Animales , Humanos , Ratones , Ratones Transgénicos , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patología , Osteólisis/genética , Osteólisis/metabolismo , Osteólisis/patología , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
16.
Blood ; 123(4): 541-53, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24255920

RESUMEN

ASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies, and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1 deletion in mice led to developmental abnormalities including dwarfism, anophthalmia, and 80% embryonic lethality. Surviving Asxl1(-/-) mice lived for up to 42 days and developed features of myelodysplastic syndrome (MDS), including dysplastic neutrophils and multiple lineage cytopenia. Asxl1(-/-) mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1(-/-) HSCs exhibited decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic lineage. Asxl1(+/-) mice also developed mild MDS-like disease, which could progress to MDS/myeloproliferative neoplasm, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1 loss led to an increased apoptosis and mitosis in Lineage(-)c-Kit(+) (Lin(-)c-Kit(+)) cells, consistent with human MDS. Furthermore, Asxl1(-/-) Lin(-)c-Kit(+) cells exhibited decreased global levels of H3K27me3 and H3K4me3 and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12, Bcl2l13). Collectively, we report a novel ASXL1 murine model that recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl1(-/-) mice.


Asunto(s)
Mutación , Síndromes Mielodisplásicos/genética , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Animales , Apoptosis , Células de la Médula Ósea/citología , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/citología , Homeostasis , Homocigoto , Humanos , Ratones , Ratones Transgénicos , Mitosis , Síndromes Mielodisplásicos/metabolismo , Fenotipo
17.
Stem Cell Investig ; 1: 19, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27358865

RESUMEN

BACKGROUND: Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by a progressive bone marrow aplasia, chromosomal instability, and acquisition of malignancies. Successful hematopoietic cell transplantation (HCT) for FA patients is challenging due to hypersensitivity to DNA alkylating agents and irradiation of FA patients. Early mobilization of autologous stem cells from the bone marrow has been thought to be ideal prior to the onset of bone marrow failure, which often occurs during childhood. However, the markedly decreased response of FA hematopoietic stem cells to granulocyte colony-stimulating factor (G-CSF) is circumventive of this autologous HCT approach. To-date, the mechanism for defective stem cell mobilization in G-CSF treated FA patients remains unclear. METHODS: Fancg heterozygous (Fancg (+/-)) mice utilized in these studies. Student's t-test and one-way ANOVA were used to evaluate statistical differences between WT and Fancg (-/-) cells. Statistical significance was defined as P values less than 0.05. RESULTS: Fancg deficient (Fancg (-/-)) mesenchymal stem/progenitor cells (MSPCs) produce significant lower levels of KC, an interleukin-8 (IL-8) related chemoattractant protein in rodents, as compared to wild type cells. Combinatorial administration of KC and G-CSF significantly increased the mobilization of hematopoietic stem/progenitor cells (HSPCs) in Fancg (-/-) mice. CONCLUSIONS: In summary, our results suggest that KC/IL-8 could be proved useful in the synergistic mobilization of FA HSPCs in combination with G-CSF.

18.
Hum Mol Genet ; 22(23): 4818-28, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23863460

RESUMEN

Neurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (nonunion fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1-associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating-related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1(-/-) pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities, including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells (BMMNCs). Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3Cre;Nf1(flox/-). Collectively, these data indicate the Ras/MAPK cascade as a critical pathway in the pathogenesis of bone loss and pseudarthrosis related to NF1 mutations. These studies provide evidence for targeting the MAPK pathway to improve bone mass and treat pseudarthrosis in NF1.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neurofibromatosis 1/metabolismo , Neurofibromina 1/deficiencia , Seudoartrosis/fisiopatología , Transducción de Señal/fisiología , Proteínas ras/metabolismo , Animales , Linaje de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Flavonoides/farmacología , Humanos , Ratones , Ratones Transgénicos , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Osteoblastos/fisiología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Seudoartrosis/tratamiento farmacológico , Seudoartrosis/genética , Seudoartrosis/patología , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Fracturas de la Tibia/fisiopatología
19.
J Bone Miner Res ; 28(12): 2476-89, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23703870

RESUMEN

Dysregulated transforming growth factor beta (TGF-ß) signaling is associated with a spectrum of osseous defects as seen in Loeys-Dietz syndrome, Marfan syndrome, and Camurati-Engelmann disease. Intriguingly, neurofibromatosis type 1 (NF1) patients exhibit many of these characteristic skeletal features, including kyphoscoliosis, osteoporosis, tibial dysplasia, and pseudarthrosis; however, the molecular mechanisms mediating these phenotypes remain unclear. Here, we provide genetic and pharmacologic evidence that hyperactive TGF-ß1 signaling pivotally underpins osseous defects in Nf1(flox/-) ;Col2.3Cre mice, a model which closely recapitulates the skeletal abnormalities found in the human disease. Compared to controls, we show that serum TGF-ß1 levels are fivefold to sixfold increased both in Nf1(flox/-) ;Col2.3Cre mice and in a cohort of NF1 patients. Nf1-deficient osteoblasts, the principal source of TGF-ß1 in bone, overexpress TGF-ß1 in a gene dosage-dependent fashion. Moreover, Nf1-deficient osteoblasts and osteoclasts are hyperresponsive to TGF-ß1 stimulation, potentiating osteoclast bone resorptive activity while inhibiting osteoblast differentiation. These cellular phenotypes are further accompanied by p21-Ras-dependent hyperactivation of the canonical TGF-ß1-Smad pathway. Reexpression of the human, full-length neurofibromin guanosine triphosphatase (GTPase)-activating protein (GAP)-related domain (NF1 GRD) in primary Nf1-deficient osteoblast progenitors, attenuated TGF-ß1 expression levels and reduced Smad phosphorylation in response to TGF-ß1 stimulation. As an in vivo proof of principle, we demonstrate that administration of the TGF-ß receptor 1 (TßRI) kinase inhibitor, SD-208, can rescue bone mass deficits and prevent tibial fracture nonunion in Nf1(flox/-) ;Col2.3Cre mice. In sum, these data demonstrate a pivotal role for hyperactive TGF-ß1 signaling in the pathogenesis of NF1-associated osteoporosis and pseudarthrosis, thus implicating the TGF-ß signaling pathway as a potential therapeutic target in the treatment of NF1 osseous defects that are refractory to current therapies.


Asunto(s)
Huesos/anomalías , Huesos/metabolismo , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Huesos/patología , Diferenciación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Dosificación de Gen , Haploinsuficiencia , Humanos , Integrasas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Neurofibromina 1/deficiencia , Neurofibromina 1/genética , Osteoblastos/metabolismo , Osteoblastos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Smad/metabolismo , Proteínas ras/metabolismo
20.
Stem Cells Dev ; 22(3): 492-500, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22873745

RESUMEN

Parathyroid hormone (PTH) anabolic osteoporosis therapy is intrinsically limited by unknown mechanisms. We previously showed that disabling the transcription factor Nmp4/CIZ in mice expanded this anabolic window while modestly elevating bone resorption. This enhanced bone formation requires a lag period to materialize. Wild-type (WT) and Nmp4-knockout (KO) mice exhibited equivalent PTH-induced increases in bone at 2 weeks of treatment, but by 7 weeks, the null mice showed more new bone. At 3-week treatment, serum osteocalcin, a bone formation marker, peaked in WT mice, but continued to increase in null mice. To determine if 3 weeks is the time when the addition of new bone diverges and to investigate its cellular basis, we treated 10-week-old null and WT animals with human PTH (1-34) (30 µg/kg/day) or vehicle before analyzing femoral trabecular architecture and bone marrow (BM) and peripheral blood phenotypic cell profiles. PTH-treated Nmp4-KO mice gained over 2-fold more femoral trabecular bone than WT by 3 weeks. There was no difference between genotypes in BM cellularity or profiles of several blood elements. However, the KO mice exhibited a significant elevation in CFU-F cells, CFU-F(Alk)(Phos+) cells (osteoprogenitors), and a higher percentage of CFU-F(Alk)(Phos+) cells/CFU-F cells consistent with an increase in CD45-/CD146+/CD105+/nestin+ mesenchymal stem cell frequency. Null BM exhibited a 2-fold enhancement in CD8+ T cells known to support osteoprogenitor differentiation and a 1.6-fold increase in CFU-GM colonies (osteoclast progenitors). We propose that Nmp4/CIZ limits the PTH anabolic window by restricting the number of BM stem, progenitor, and blood cells that support anabolic bone remodeling.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Osteoblastos/fisiología , Teriparatido/administración & dosificación , Factores de Transcripción/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Remodelación Ósea , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Células Cultivadas , Femenino , Fémur/citología , Fémur/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/fisiología , Tamaño de los Órganos , Osteocalcina/sangre , Bazo/anatomía & histología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA