Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400622, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820600

RESUMEN

Virion-mediated outbreaks are imminent and despite rapid responses, continue to cause adverse symptoms and death. Therefore, tunable, sensitive, high-throughput assays are needed to help diagnose future virion-mediated outbreaks. Herein, it is developed a tunable in situ assay to selectively enrich virions and extracellular vesicles (EVs) and simultaneously detect antigens and nucleic acids at a single-particle resolution. The Biochip Antigen and RNA Assay (BARA) enhanced sensitivities compared to quantitative reverse-transcription polymerase chain reaction (qRT-PCR), enabling the detection of virions in asymptomatic patients, genetic mutations in single virions, and enabling the continued long-term expression of viral RNA in the EV-enriched subpopulation in the plasma of patients with post-acute sequelae of the coronavirus disease of 2019 (COVID-19). BARA revealed highly accurate diagnoses of COVID-19 by simultaneously detecting the spike glycoprotein and nucleocapsid-encoding RNA in saliva and nasopharyngeal swab samples. Altogether, the single-particle detection of antigens and viral RNA provides a tunable framework for the diagnosis, monitoring, and mutation screening of current and future outbreaks.

2.
Cell Rep ; 43(3): 113872, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427562

RESUMEN

Infection, autoimmunity, and cancer are principal human health challenges of the 21st century. Often regarded as distinct ends of the immunological spectrum, recent studies hint at potential overlap between these diseases. For example, inflammation can be pathogenic in infection and autoimmunity. T resident memory (TRM) cells can be beneficial in infection and cancer. However, these findings are limited by size and scope; exact immunological factors shared across diseases remain elusive. Here, we integrate large-scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against disease severity, mortality, and autoimmune/post-acute chronic disease. We reveal that NKG2A+ CD8+ T cells correlate with reduced inflammation and increased humoral immunity and that they resemble TRM cells. Our results suggest NKG2A+ biases as a cross-disease factor of protection, supporting suggestions of immunological overlap between infection, autoimmunity, and cancer.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Transmisibles , Neoplasias , Humanos , Linfocitos T CD8-positivos , Neoplasias/patología , Autoinmunidad , Inflamación/patología , Enfermedades Autoinmunes/patología , Enfermedades Transmisibles/patología , Memoria Inmunológica
4.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35547855

RESUMEN

Clinical diagnosis typically incorporates physical examination, patient history, and various laboratory tests and imaging studies, but makes limited use of the human system's own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis (Mal-ID) , an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to SARS-CoV-2, Influenza, and HIV, highlight antigen-specific receptors, and reveal distinct characteristics of Systemic Lupus Erythematosus and Type-1 Diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of human immune responses.

5.
Cell Rep ; 42(11): 113279, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37883974

RESUMEN

Antigen-specific CD8+ T cells mediate pathogen clearance. T cell phenotype is influenced by T cell receptor (TCR) sequences and environmental signals. Quantitative comparisons of these factors in human disease, while challenging to obtain, can provide foundational insights into basic T cell biology. Here, we investigate the phenotype kinetics of 679 CD8+ T cell clonotypes, each with specificity against one of three immunogenic viral antigens. Data were collected from a longitudinal study of 68 COVID-19 patients with antigens from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), and influenza. Each antigen is associated with a different type of immune activation during COVID-19. We find TCR sequence to be by far the most important factor in shaping T cell phenotype and persistence for populations specific to any of these antigens. Our work demonstrates the important relationship between TCR sequence and T cell phenotype and persistence and helps explain why T cell phenotype often appears to be determined early in an infection.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , Antígenos Virales , Estudios Longitudinales , Receptores de Antígenos de Linfocitos T/metabolismo , Fenotipo
6.
Cell Rep ; 42(10): 113212, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37792533

RESUMEN

Local immune activation at mucosal surfaces, mediated by mucosal lymphoid tissues, is vital for effective immune responses against pathogens. While pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread to multiple organs, patients with coronavirus disease 2019 (COVID-19) primarily experience inflammation and damage in their lungs. To investigate this apparent organ-specific immune response, we develop an analytical framework that recognizes the significance of mucosal lymphoid tissues. This framework combines histology, immunofluorescence, spatial transcript profiling, and mathematical modeling to identify cellular and gene expression differences between the lymphoid tissues of the lung and the gut and predict the determinants of those differences. Our findings indicate that mucosal lymphoid tissues are pivotal in organ-specific immune response to SARS-CoV-2, mediating local inflammation and tissue damage and contributing to immune dysfunction. The framework developed here has potential utility in the study of long COVID and may streamline biomarker discovery and treatment design for diseases with differential pathologies at the organ level.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Síndrome Post Agudo de COVID-19 , Inflamación , Inmunidad
7.
Trends Analyt Chem ; 1682023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37840599

RESUMEN

Metabolic assays serve as pivotal tools in biomedical research, offering keen insights into cellular physiological and pathological states. While mass spectrometry (MS)-based metabolomics remains the gold standard for comprehensive, multiplexed analyses of cellular metabolites, innovative technologies are now emerging for the targeted, quantitative scrutiny of metabolites and metabolic pathways at the single-cell level. In this review, we elucidate an array of these advanced methodologies, spanning synthetic and surface chemistry techniques, imaging-based methods, and electrochemical approaches. We summarize the rationale, design principles, and practical applications for each method, and underscore the synergistic benefits of integrating single-cell metabolomics (scMet) with other single-cell omics technologies. Concluding, we identify prevailing challenges in the targeted scMet arena and offer a forward-looking commentary on future avenues and opportunities in this rapidly evolving field.

8.
Front Immunol ; 14: 1170462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207206

RESUMEN

MHC class I "single-chain trimer" molecules, coupling MHC heavy chain, ß2-microglobulin, and a specific peptide into a single polypeptide chain, are widely used in research. To more fully understand caveats associated with this design that may affect its use for basic and translational studies, we evaluated a set of engineered single-chain trimers with combinations of stabilizing mutations across eight different classical and non-classical human class I alleles with 44 different peptides, including a novel human/murine chimeric design. While, overall, single-chain trimers accurately recapitulate native molecules, care was needed in selecting designs for studying peptides longer or shorter than 9-mers, as single-chain trimer design could affect peptide conformation. In the process, we observed that predictions of peptide binding were often discordant with experiment and that yields and stabilities varied widely with construct design. We also developed novel reagents to improve the crystallizability of these proteins and confirmed novel modes of peptide presentation.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Péptidos , Humanos , Ratones , Animales , Antígenos de Histocompatibilidad Clase I/genética , Péptidos/metabolismo , Epítopos/química
9.
Commun Chem ; 6(1): 95, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202473

RESUMEN

Macrocycle peptides are promising constructs for imaging and inhibiting extracellular, and cell membrane proteins, but their use for targeting intracellular proteins is typically limited by poor cell penetration. We report the development of a cell-penetrant high-affinity peptide ligand targeted to the phosphorylated Ser474 epitope of the (active) Akt2 kinase. This peptide can function as an allosteric inhibitor, an immunoprecipitation reagent, and a live cell immunohistochemical staining reagent. Two cell penetrant stereoisomers were prepared and shown to exhibit similar target binding affinities and hydrophobic character but 2-3-fold different rates of cell penetration. Experimental and computational studies resolved that the ligands' difference in cell penetration could be assigned to their differential interactions with cholesterol in the membrane. These results expand the tool kit for designing new chiral-based cell-penetrant ligands.

10.
Front Immunol ; 14: 1146826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180102

RESUMEN

The human leukocyte antigen (HLA) locus plays a central role in adaptive immune function and has significant clinical implications for tissue transplant compatibility and allelic disease associations. Studies using bulk-cell RNA sequencing have demonstrated that HLA transcription may be regulated in an allele-specific manner and single-cell RNA sequencing (scRNA-seq) has the potential to better characterize these expression patterns. However, quantification of allele-specific expression (ASE) for HLA loci requires sample-specific reference genotyping due to extensive polymorphism. While genotype prediction from bulk RNA sequencing is well described, the feasibility of predicting HLA genotypes directly from single-cell data is unknown. Here we evaluate and expand upon several computational HLA genotyping tools by comparing predictions from human single-cell data to gold-standard, molecular genotyping. The highest 2-field accuracy averaged across all loci was 76% by arcasHLA and increased to 86% using a composite model of multiple genotyping tools. We also developed a highly accurate model (AUC 0.93) for predicting HLA-DRB345 copy number in order to improve genotyping accuracy of the HLA-DRB locus. Genotyping accuracy improved with read depth and was reproducible at repeat sampling. Using a metanalytic approach, we also show that HLA genotypes from PHLAT and OptiType can generate ASE ratios that are highly correlated (R2 = 0.8 and 0.94, respectively) with those derived from gold-standard genotyping.


Asunto(s)
Antígenos HLA , Transcriptoma , Humanos , Análisis de Secuencia de ADN , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase I/genética , Genotipo , Antígenos de Histocompatibilidad Clase II/genética
11.
Commun Biol ; 6(1): 528, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193826

RESUMEN

The discovery and characterization of antigen-specific CD8+ T cell clonotypes typically involves the labor-intensive synthesis and construction of peptide-MHC tetramers. We adapt single-chain trimer (SCT) technologies into a high throughput platform for pMHC library generation, showing that hundreds can be rapidly prepared across multiple Class I HLA alleles. We use this platform to explore the impact of peptide and SCT template mutations on protein expression yield, thermal stability, and functionality. SCT libraries were an efficient tool for identifying T cells recognizing commonly reported viral epitopes. We then construct SCT libraries to capture SARS-CoV-2 specific CD8+ T cells from COVID-19 participants and healthy donors. The immunogenicity of these epitopes is validated by functional assays of T cells with cloned TCRs captured using SCT libraries. These technologies should enable the rapid analyses of peptide-based T cell responses across several contexts, including autoimmunity, cancer, or infectious disease.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , SARS-CoV-2/genética , Antígenos , Epítopos , Péptidos/genética
12.
Cell Syst ; 14(4): 273-284.e5, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37001518

RESUMEN

Antigen-specific T cell receptor (TCR) sequences can have prognostic, predictive, and therapeutic value, but decoding the specificity of TCR recognition remains challenging. Unlike DNA strands that base pair, TCRs bind to their targets with different orientations and different lengths, which complicates comparisons. We present scanning parametrized by normalized TCR length (SPAN-TCR) to analyze antigen-specific TCR CDR3 sequences and identify patterns driving TCR-pMHC specificity. Using entropic analysis, SPAN-TCR identifies 2-mer motifs that decrease the diversity (entropy) of CDR3s. These motifs are the most common patterns that can predict CDR3 composition, and we identify "essential" motifs that decrease entropy in the same CDR3 α or ß chain containing the 2-mer, and "super-essential" motifs that decrease entropy in both chains. Molecular dynamics analysis further suggests that these motifs may play important roles in binding. We then employ SPAN-TCR to resolve similarities in TCR repertoires against different antigens using public databases of TCR sequences.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Entropía , Secuencia de Aminoácidos , Antígenos
13.
Nat Med ; 29(1): 236-246, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36482101

RESUMEN

Post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are debilitating, clinically heterogeneous and of unknown molecular etiology. A transcriptome-wide investigation was performed in 165 acutely infected hospitalized individuals who were followed clinically into the post-acute period. Distinct gene expression signatures of post-acute sequelae were already present in whole blood during acute infection, with innate and adaptive immune cells implicated in different symptoms. Two clusters of sequelae exhibited divergent plasma-cell-associated gene expression patterns. In one cluster, sequelae associated with higher expression of immunoglobulin-related genes in an anti-spike antibody titer-dependent manner. In the other, sequelae associated independently of these titers with lower expression of immunoglobulin-related genes, indicating lower non-specific antibody production in individuals with these sequelae. This relationship between lower total immunoglobulins and sequelae was validated in an external cohort. Altogether, multiple etiologies of post-acute sequelae were already detectable during SARS-CoV-2 infection, directly linking these sequelae with the acute host response to the virus and providing early insights into their development.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Anticuerpos Antivirales
14.
Nature ; 615(7953): 687-696, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36356599

RESUMEN

T cell receptors (TCRs) enable T cells to specifically recognize mutations in cancer cells1-3. Here we developed a clinical-grade approach based on CRISPR-Cas9 non-viral precision genome-editing to simultaneously knockout the two endogenous TCR genes TRAC (which encodes TCRα) and TRBC (which encodes TCRß). We also inserted into the TRAC locus two chains of a neoantigen-specific TCR (neoTCR) isolated from circulating T cells of patients. The neoTCRs were isolated using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with different refractory solid cancers received up to three distinct neoTCR transgenic cell products. Each product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation, first-in-human phase I clinical trial ( NCT03970382 ). One patient had grade 1 cytokine release syndrome and one patient had grade 3 encephalitis. All participants had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease and the other eleven had disease progression as the best response on the therapy. neoTCR transgenic T cells were detected in tumour biopsy samples after infusion at frequencies higher than the native TCRs before infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens. Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR T cell products and the ability of the transgenic T cells to traffic to the tumours of patients are also demonstrated.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Edición Génica , Neoplasias , Medicina de Precisión , Receptores de Antígenos de Linfocitos T , Linfocitos T , Transgenes , Humanos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Biopsia , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Síndrome de Liberación de Citoquinas/complicaciones , Progresión de la Enfermedad , Encefalitis/complicaciones , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T , Mutación , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Seguridad del Paciente , Medicina de Precisión/efectos adversos , Medicina de Precisión/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transgenes/genética , Antígenos HLA/inmunología , Sistemas CRISPR-Cas
15.
J Exp Med ; 219(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36066491

RESUMEN

Human adaptive-like natural killer (NK) cells express low levels of FcεRIγ (FcRγ-/low) and are reported to accumulate during COVID-19 infection; however, the mechanism underlying and regulating FcRγ expression in NK cells has yet to be fully defined. We observed lower FcRγ protein expression in NK cell subsets from lung transplant patients during rapamycin treatment, suggesting a link with reduced mTOR activity. Further, FcRγ-/low NK cell subsets from healthy donors displayed reduced mTOR activity. We discovered that FcRγ upregulation is dependent on cell proliferation progression mediated by IL-2, IL-15, or IL-12, is sensitive to mTOR suppression, and is inhibited by TGFß or IFNα. Accordingly, the accumulation of adaptive-like FcRγ-/low NK cells in COVID-19 patients corresponded to increased TGFß and IFNα levels and disease severity. Our results show that an adaptive-like NK cell phenotype is induced by diminished cell proliferation and has an early prognostic value for increased TGFß and IFNα levels in COVID-19 infection associated with disease severity.


Asunto(s)
COVID-19 , Proliferación Celular , Humanos , Células Asesinas Naturales , Fenotipo , Serina-Treonina Quinasas TOR , Factor de Crecimiento Transformador beta
16.
Front Oncol ; 12: 914594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875150

RESUMEN

The influence of metabolism on signaling, epigenetic markers, and transcription is highly complex yet important for understanding cancer physiology. Despite the development of high-resolution multi-omics technologies, it is difficult to infer metabolic activity from these indirect measurements. Fortunately, genome-scale metabolic models and constraint-based modeling provide a systems biology framework to investigate the metabolic states and define the genotype-phenotype associations by integrations of multi-omics data. Constraint-Based Reconstruction and Analysis (COBRA) methods are used to build and simulate metabolic networks using mathematical representations of biochemical reactions, gene-protein reaction associations, and physiological and biochemical constraints. These methods have led to advancements in metabolic reconstruction, network analysis, perturbation studies as well as prediction of metabolic state. Most computational tools for performing these analyses are written for MATLAB, a proprietary software. In order to increase accessibility and handle more complex datasets and models, community efforts have started to develop similar open-source tools in Python. To date there is a comprehensive set of tools in Python to perform various flux analyses and visualizations; however, there are still missing algorithms in some key areas. This review summarizes the availability of Python software for several components of COBRA methods and their applications in cancer metabolism. These tools are evolving rapidly and should offer a readily accessible, versatile way to model the intricacies of cancer metabolism for identifying cancer-specific metabolic features that constitute potential drug targets.

17.
Proc Natl Acad Sci U S A ; 119(31): e2203410119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878026

RESUMEN

Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide-major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.


Asunto(s)
Fosfatasa Ácida , Antígenos de Neoplasias , Receptores de Antígenos de Linfocitos T , Fosfatasa Ácida/metabolismo , Antígenos de Neoplasias/metabolismo , Epítopos , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Leucocitos Mononucleares , Neoplasias/inmunología , Péptidos , Receptores de Antígenos de Linfocitos T/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(21): e2200413119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35576468

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.


Asunto(s)
Anticuerpos Neutralizantes , Autoanticuerpos , Autoinmunidad , COVID-19 , Interferón Tipo I , SARS-CoV-2 , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Autoanticuerpos/sangre , COVID-19/inmunología , COVID-19/mortalidad , Femenino , Humanos , Interferón Tipo I/inmunología , Masculino , Persona de Mediana Edad , Riesgo
19.
Science ; 376(6590): eabi9591, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35258337

RESUMEN

In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Animales , Linfocitos T CD8-positivos , Humanos , Ratones , Receptores KIR , Linfocitos T Reguladores
20.
Nat Biotechnol ; 40(1): 110-120, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34489601

RESUMEN

A better understanding of the metabolic alterations in immune cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may elucidate the wide diversity of clinical symptoms experienced by individuals with coronavirus disease 2019 (COVID-19). Here, we report the metabolic changes associated with the peripheral immune response of 198 individuals with COVID-19 through an integrated analysis of plasma metabolite and protein levels as well as single-cell multiomics analyses from serial blood draws collected during the first week after clinical diagnosis. We document the emergence of rare but metabolically dominant T cell subpopulations and find that increasing disease severity correlates with a bifurcation of monocytes into two metabolically distinct subsets. This integrated analysis reveals a robust interplay between plasma metabolites and cell-type-specific metabolic reprogramming networks that is associated with disease severity and could predict survival.


Asunto(s)
COVID-19/sangre , COVID-19/inmunología , Monocitos/metabolismo , Análisis de la Célula Individual , Linfocitos T/metabolismo , COVID-19/diagnóstico , COVID-19/metabolismo , Humanos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA