Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285533

RESUMEN

Plant-specialized metabolism is largely driven by the oxidative tailoring of key chemical scaffolds catalyzed by cytochrome P450 (CYP450s) enzymes. Monoterpene indole alkaloids (MIAs) tabersonine and pseudo-tabersonine, found in the medicinal plant Tabernanthe iboga (commonly known as iboga), are tailored with oxidations, and the enzymes involved remain unknown. Here, we developed a streamlined screening strategy to test the activity of T. iboga CYP450s in Nicotiana benthamiana. Using multigene constructs encoding the biosynthesis of tabersonine and pseudo-tabersonine scaffolds, we aimed to uncover the CYP450s responsible for oxidative transformations in these scaffolds. Our approach identified two T. iboga cytochrome P450 enzymes: pachysiphine synthase (PS) and 16-hydroxy-tabersonine synthase (T16H). These enzymes catalyze an epoxidation and site-specific hydroxylation of tabersonine to produce pachysiphine and 16-OH-tabersonine, respectively. This work provides new insights into the biosynthetic pathways of MIAs and underscores the utility of N. benthamiana and Catharanthus roseus as platforms for the functional characterization of plant enzymes.

2.
Nat Chem Biol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271954

RESUMEN

Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.

3.
J Am Chem Soc ; 146(34): 23891-23900, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39138868

RESUMEN

Plants produce an extraordinary array of natural products (specialized metabolites). Notably, these structurally complex molecules are not evenly distributed throughout plant tissues but are instead synthesized and stored in specific cell types. Elucidating both the biosynthesis and function of natural products would be greatly facilitated by tracking the location of these metabolites at the cell-level resolution. However, detection, identification, and quantification of metabolites in single cells, particularly from plants, have remained challenging. Here, we show that we can definitively identify and quantify the concentrations of 16 molecules from four classes of natural products in individual cells of leaf, root, and petal of the medicinal plant Catharanthus roseus using a plate-based single-cell mass spectrometry method. We show that identical natural products show substantially different patterns of cell-type localization in different tissues. Moreover, we show that natural products are often found in a wide range of concentrations across a population of cells, with some natural products at concentrations of over 100 mM per cell. This single-cell mass spectrometry method provides a highly resolved picture of plant natural product biosynthesis partitioning at a cell-specific resolution.


Asunto(s)
Productos Biológicos , Catharanthus , Espectrometría de Masas , Análisis de la Célula Individual , Productos Biológicos/metabolismo , Productos Biológicos/química , Productos Biológicos/análisis , Catharanthus/metabolismo , Catharanthus/química , Análisis de la Célula Individual/métodos , Espectrometría de Masas/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Raíces de Plantas/metabolismo , Raíces de Plantas/química
4.
Mol Plant ; 17(8): 1236-1254, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38937971

RESUMEN

Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.


Asunto(s)
Alcaloides , Solanum , Solanum/metabolismo , Alcaloides/biosíntesis , Alcaloides/química , Alcaloides/metabolismo , Alcaloides Solanáceos/biosíntesis , Alcaloides Solanáceos/metabolismo , Alcaloides Solanáceos/química , Esteroides/biosíntesis , Esteroides/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Solanum nigrum/metabolismo , Solanum nigrum/química
5.
Nat Commun ; 14(1): 4540, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500644

RESUMEN

Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.


Asunto(s)
Solanum lycopersicum , Frutas/metabolismo , Aciltransferasas/metabolismo , Vías Biosintéticas , Fitomejoramiento
6.
Phytochemistry ; 209: 113620, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36863602

RESUMEN

Monoterpenoid indole alkaloids (MIAs) are a large group of biosynthetic compounds, which have pharmacological properties. One of these MIAs, reserpine, was discovered in the 1950s and has shown properties as an anti-hypertension and anti-microbial agent. Reserpine was found to be produced in various plant species within the genus of Rauvolfia. However, even though its presence is well known, it is still unknown in which tissues Rauvolfia produce reserpine and where the individual steps in the biosynthetic pathway take place. In this study, we explore how matrix assisted laser desorption ionization (MALDI) and desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) can be used in the investigation of a proposed biosynthetic pathway by localizing reserpine and the theoretical intermediates of it. The results show that ions corresponding to intermediates of reserpine were localized in several of the major parts of Rauvolfia tetraphylla when analyzed by MALDI- and DESI-MSI. In stem tissue, reserpine and many of the intermediates were found compartmentalized in the xylem. For most samples, reserpine itself was mainly found in the outer layers of the sample, suggesting it may function as a defense compound. To further confirm the place of the different metabolites in the reserpine biosynthetic pathway, roots and leaves of R. tetraphylla were fed a stable-isotope labelled version of the precursor tryptamine. Subsequently, several of the proposed intermediates were detected in the normal version as well as in the isotope labelled versions, confirming that they were synthesized in planta from tryptamine. In this experiment, a potential novel dimeric MIA was discovered in leaf tissue of R. tetraphylla. The study constitutes to date the most comprehensive spatial mapping of metabolites in the R. tetraphylla plant. In addition, the article also contains new illustrations of the anatomy of R. tetraphylla.


Asunto(s)
Rauwolfia , Alcaloides de Triptamina Secologanina , Alcaloides de Triptamina Secologanina/química , Rauwolfia/metabolismo , Reserpina/química , Reserpina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triptaminas/metabolismo , Antihipertensivos , Alcaloides Indólicos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
7.
Chemistry ; 20(5): 1434-9, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24357460

RESUMEN

New phosphorus-containing, five-membered P,P,P and P,N,P heterocycles were synthesized and fully characterized. The P,P,P heterocycles, 1,2,3-triphospholanes, can be synthesized by two different facile pathways, whereas the P,N,P compound, a 1-aza-2,5-diphospholane, can only be obtained with silylamine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA