Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37656881

RESUMEN

Biomanufacturing could contribute as much as ${\$}$30 trillion to the global economy by 2030. However, the success of the growing bioeconomy depends on our ability to manufacture high-performing strains in a time- and cost-effective manner. The Design-Build-Test-Learn (DBTL) framework has proven to be an effective strain engineering approach. Significant improvements have been made in genome engineering, genotyping, and phenotyping throughput over the last couple of decades that have greatly accelerated the DBTL cycles. However, to achieve a radical reduction in strain development time and cost, we need to look at the strain engineering process through a lens of optimizing the whole cycle, as opposed to simply increasing throughput at each stage. We propose an approach that integrates all 4 stages of the DBTL cycle and takes advantage of the advances in computational design, high-throughput genome engineering, and phenotyping methods, as well as machine learning tools for making predictions about strain scale-up performance. In this perspective, we discuss the challenges of industrial strain engineering, outline the best approaches to overcoming these challenges, and showcase examples of successful strain engineering projects for production of heterologous proteins, amino acids, and small molecules, as well as improving tolerance, fitness, and de-risking the scale-up of industrial strains.

2.
Mol Plant Microbe Interact ; 16(9): 817-26, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12971605

RESUMEN

Alleles or tightly linked genes at the soybean (Glycine max L. Merr.) Rpg1 locus confer resistance to strains of Pseudomonas syringae pv. glycinea that express the avirulence genes avrB or avrRpm1. We have previously mapped Rpg1-b (the gene specific for avrB) to a cluster of resistance genes (R genes) with diverse specificities in molecular linkage group F. Here, we describe the high-resolution physical and genetic mapping of Rpg1-b to a 0.16-cM interval encompassed by two overlapping BAC clones spanning approximately 270 kilobases. Rpg1-b is part of a complex locus containing numerous genes related to previously characterized coiled coil-nucleotide binding site-leucine rich repeat (CC-NBS-LRR)-type R genes that are spread throughout this region. Phylogenetic and Southern blot analyses group these genes into four distinct subgroups, some of which are conserved in the common bean, Phaseolus vulgaris, indicating that this R gene cluster may predate the divergence of Phaseolus and Glycine. Members from different subgroups are physically intermixed and display a high level of polymorphism between soybean cultivars, suggesting that this region is rearranging at a high frequency. At least five CC-NBS-LRR-type genes cosegregate with Rpg1-b in our large mapping populations.


Asunto(s)
Glycine max/genética , Familia de Multigenes , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Artificiales Bacterianos , Cartilla de ADN , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA