Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39062955

RESUMEN

This study investigated the influence of photoperiod (day length) on the efficacy of grape seed proanthocyanidin extract (GSPE) in mitigating metabolic disorders in obese rats fed a cafeteria diet. Rats were exposed to standard (L12), long (L18), or short (L6) photoperiods and treated with GSPE or vehicle. In the standard photoperiod, GSPE reduced body weight gain (50.5%), total cholesterol (37%), and triglycerides (34.8%), while increasing the expression of hepatic metabolic genes. In the long photoperiod, GSPE tended to decrease body weight gain, increased testosterone levels (68.3%), decreased liver weight (12.4%), and decreased reverse serum amino acids. In the short photoperiod, GSPE reduced glycemia (~10%) and lowered triglyceride levels (38.5%), with effects modified by diet. The standard photoperiod showed the greatest efficacy against metabolic syndrome-associated diseases. The study showed how day length affects GSPE's benefits and underscores considering biological rhythms in metabolic disease therapies.


Asunto(s)
Extracto de Semillas de Uva , Hígado , Fotoperiodo , Proantocianidinas , Animales , Proantocianidinas/farmacología , Extracto de Semillas de Uva/farmacología , Ratas , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Triglicéridos/sangre , Triglicéridos/metabolismo , Ratas Wistar , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/etiología
2.
Food Funct ; 15(9): 4905-4924, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38598180

RESUMEN

In recent years many women have looked for alternative therapies to address menopause. Hesperidin, phytosterols and curcumin are bioactive compounds that can ameliorate some cardiovascular risk factors associated with menopause, although there are no data concerning the effects of their combined supplementation. We used ovariectomized (OVX) rats, a postmenopausal model with oestrogen deficiency, to evaluate whether supplementation with a multi-ingredient (MI) including hesperidin, phytosterols and curcumin for 57 days would display beneficial effects against fat mass accretion and metabolic disturbances associated with menopause. Twenty OVX rats were orally supplemented with either MI (OVX-MI) or vehicle (OVX). Furthermore, 10 OVX rats orally received the vehicle along with subcutaneous injections of 17ß-oestradiol biweekly (OVX-E2), whereas 10 rats were sham operated and received oral and injected vehicles (control group; SH). MI supplementation partly counteracted the fat mass accretion observed in OVX animals, which was evidenced by decreased total fat mass, adiposity index, the weight of retroperitoneal, inguinal and mesenteric white adipose tissue (MWAT) depots and MWAT adipocyte hypertrophy. These effects were accompanied by a significant decrease in the circulating levels of leptin and the mRNA levels of the fatty acid uptake-related genes Lpl and Cd36 in MWAT. These results were very similar to those observed in OVX-E2 animals. OVX-MI rats also displayed a higher lean body mass, lean/fat mass ratio, adiponectin-to-leptin ratio and insulin sensitivity than their OVX counterparts. Our findings can pave the way for using this MI formulation as an alternative therapy to manage obesity and to improve the cardiometabolic health of menopausal women.


Asunto(s)
Adiposidad , Curcumina , Suplementos Dietéticos , Hesperidina , Ovariectomía , Fitosteroles , Animales , Femenino , Hesperidina/farmacología , Hesperidina/administración & dosificación , Fitosteroles/farmacología , Fitosteroles/administración & dosificación , Ratas , Curcumina/farmacología , Curcumina/administración & dosificación , Adiposidad/efectos de los fármacos , Leptina/sangre , Ratas Sprague-Dawley , Humanos , Ratas Wistar
3.
Antioxidants (Basel) ; 13(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38247491

RESUMEN

In this study, we examined the metabolic and gut microbiome responses to paraquat (PQ) in male Wistar rats, focusing on oxidative stress effects. Rats received a single intraperitoneal injection of PQ at 15 and 30 mg/kg, and various oxidative stress parameters (i.e., MDA, SOD, ROS, 8-isoprostanes) were assessed after three days. To explore the omic profile, GC-qTOF and UHPLC-qTOF were performed to assess the plasma metabolome; 1H-NMR was used to assess the urine metabolome; and shotgun metagenomics sequencing was performed to study the gut microbiome. Our results revealed reductions in body weight and tissue changes, particularly in the liver, were observed, suggesting a systemic effect of PQ. Elevated lipid peroxidation and reactive oxygen species levels in the liver and plasma indicated the induction of oxidative stress. Metabolic profiling revealed changes in the tricarboxylic acid cycle, accumulation of ketone body, and altered levels of key metabolites, such as 3-hydroxybutyric acid and serine, suggesting intricate links between energy metabolism and redox reactions. Plasma metabolomic analysis revealed alterations in mitochondrial metabolism, nicotinamide metabolism, and tryptophan degradation. The gut microbiome showed shifts, with higher PQ doses influencing microbial populations (e.g., Escherichia coli and Akkermansia muciniphila) and metagenomic functions (pyruvate metabolism, fermentation, nucleotide and amino acid biosynthesis). Overall, this study provides comprehensive insights into the complex interplay between PQ exposure, metabolic responses, and gut microbiome dynamics. These findings enhance our understanding of the mechanisms behind oxidative stress-induced metabolic alterations and underscore the connections between xenobiotic exposure, gut microbiota, and host metabolism.

4.
Sci Rep ; 13(1): 22646, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114521

RESUMEN

Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in LPL activity might result in an identifiable metabolomic signature. The aim of the present study was to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, which led to a predictive model developed using machine learning techniques. The predictive model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. The application of predictive metabolomic models based on mechanistic preclinical research may be considered as a strategy to stratify subjects with HTG of different origins. This approach may be of interest for precision medicine and nutritional approaches.


Asunto(s)
Hipertrigliceridemia , Lipoproteína Lipasa , Animales , Humanos , Masculino , Ratas , Ésteres del Colesterol/metabolismo , Lipoproteína Lipasa/metabolismo , Ratas Wistar , Triglicéridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA