Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomacromolecules ; 25(7): 4203-4214, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38860966

RESUMEN

Water-borne coatings were prepared from poly(methyl methacrylate-co-butyl acrylate) latexes using different methacrylic acid containing macromonomers as stabilizers, and their physical properties were determined. The amphiphilic methacrylic acid macromonomers containing methyl, butyl, or lauryl methacrylate as hydrophobic comonomers were synthesized via catalytic chain transfer polymerization to give stabilizers with varying architecture, composition, and molar mass. A range of latexes of virtually the same composition was prepared by keeping the content of methacrylic acid groups during the emulsion polymerization constant and by only varying the microstructure of the macromonomers. These latexes displayed a range of rheological behaviors: from highly viscous and shear thinning to low viscous and Newtonian. The contact angles of the resulting coatings ranged from very hydrophilic (<10°) to almost hydrophobic (88°), and differences in hardness, roughness, and water vapor sorption and permeability were found.


Asunto(s)
Tensoactivos , Agua , Tensoactivos/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Reología , Polímeros/química , Metacrilatos/química , Viscosidad , Propiedades de Superficie , Polimerizacion
2.
Polym Chem ; 14(37): 4294-4302, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-38013800

RESUMEN

Neighboring group assisted rearrangement substantially increases relaxation rates in dynamic covalent networks, allowing easier (re)processing of these materials. In this work, we introduce a dynamic covalent network with anionic phosphate diesters as the sole dynamic group, incorporating ß-hydroxy groups as a neighboring group, mimicking the self-cleaving backbone structure of RNA. The diester-based networks have slightly slower dynamics, but significantly better hydrolytic (and thermal) stability than analogous phosphate triester-based networks. Catalysis by the ß-hydroxy group is vital for fast network rearrangement to occur, while the nature of the counterion has a negligible effect on the relaxation rate. Variable temperature 31P solid-state NMR demonstrated a dissociative bond rearrangement mechanism to be operative.

3.
Macromolecules ; 56(16): 6452-6460, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37637305

RESUMEN

In dynamic polyamide networks, 1,2,4,5-benzene tetraamide (B4A) units act simultaneously as a dynamic covalent cross-linker and as supramolecular stacking motif. This results in materials with a rubbery plateau modulus that is about 20 times higher than that of a corresponding reference network in which the supramolecular interaction is suppressed. In branched polyamides with the same B4A dynamic motif, hydrogen bonding and stacking lead to strong and reversible supramolecular networks, whereas a branched polyamide with the nonstacking reference linker is a viscous liquid under the same conditions. Wide-angle X-ray scattering and variable-temperature infrared experiments confirm that covalent cross-linking and stacking cooperatively contribute to the dynamics of the network. Stress relaxation in the reference network is dominated by a single mode related to the dynamic covalent chemistry, whereas relaxation in the B4A network has additional modes assigned to the stacking dynamics.

4.
Macromolecules ; 54(20): 9703-9711, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34720191

RESUMEN

The diamide-imide equilibrium was successfully exploited for the synthesis of dynamic covalent polymer networks in which a dissociative bond exchange mechanism leads to high processibility at temperatures above ≈110 °C. Dynamic covalent networks bridge the gap between thermosets and thermoplastic polymers. At the operating temperature, when the network is fixed, dynamic covalent networks are elastic solids, while at high temperatures, chemical exchange reactions turn the network into a processible viscoelastic material. Upon heating a dissociative network, the viscosity may also decrease due to a shift of the chemical equilibrium; in such materials, the balance between processibility and excessive flow is important. In this study, a network is prepared that upon heating to above ≈110 °C dissociates to a significant extent due to a shift in the amide-imide equilibrium of a bisimide, pyromellitic diimide, in combination with poly(tetrahydrofuran) diamines. At room temperature, the resulting materials are elastic rubbers with a tensile modulus of 2-10 MPa, and they become predominantly viscous above a temperature of approximately 110 °C, which is dependent on the stoichiometry of the components. The diamide-imide equilibrium was studied in model reactions with NMR, and variable temperature infrared (IR) spectroscopy was used to investigate the temperature dependence of the equilibrium in the network. The temperature-dependent mechanical properties of the networks were found to be fully reversible, and the material could be reprocessed several times without loss of properties such as modulus or strain at break. The high processibility of these networks at elevated temperatures creates opportunities in additive manufacturing applications such as selective laser sintering.

5.
Angew Chem Int Ed Engl ; 60(52): 27026-27030, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34672077

RESUMEN

We report on the synthesis of monodisperse, flower-like, liquid crystalline (LC) polymer particles by precipitation polymerization of a LC mixture consisting of benzoic acid-functionalized acrylates and disulfide-functionalized diacrylates. Introduction of a minor amount of redox-responsive disulfide-functionalized diacrylates (≤10 wt %) induced the formation of flower-like shapes. The shape of the particles can be tuned from flower- to disk-like to spherical by elevating the polymerization temperature. The solvent environment also has a pronounced effect on the particle size. Time-resolved TEM reveals that the final particle morphology was formed in the early stages of the polymerization and that subsequent polymerization resulted in continued particle growth without affecting the morphology. Finally, the degradation of the particles under reducing conditions was much faster for flower-like particles than for spherical particles, likely a result of their higher surface-to-volume ratio.

6.
Macromolecules ; 54(17): 7955-7962, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34552277

RESUMEN

Bond exchange via neighboring group-assisted reactions in dynamic covalent networks results in efficient mechanical relaxation. In Nature, the high reactivity of RNA toward nucleophilic substitution is largely attributed to the formation of a cyclic phosphate ester intermediate via neighboring group participation. We took inspiration from RNA to develop a dynamic covalent network based on ß-hydroxyl-mediated transesterifications of hydroxyethyl phosphate triesters. A simple one-step synthetic strategy provided a network containing phosphate triesters with a pendant hydroxyethyl group. 31P solid-state NMR demonstrated that a cyclic phosphate triester is an intermediate in transesterification, leading to dissociative network rearrangement. Significant viscous flow at 60-100 °C makes the material suitable for fast processing via extrusion and compression molding.

7.
Macromolecules ; 54(13): 6052-6060, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34276068

RESUMEN

Monodisperse, micrometer-sized liquid crystalline (LC) shells are prepared by seeded dispersion polymerization. After polymerizing LC monomer mixtures in the presence of non-crosslinked polymer seeds, hollow LC polymer shells with programmable alignment and shape are prepared by removing the seeds. The LC alignment in the LC polymer shells can be easily manipulated by the polymer seeds, as a radial alignment is observed with amorphous poly(phenyl methacrylate) seeds and a bipolar alignment is observed with bipolar LC polymer seeds. After removal of the seeds, the radially aligned samples give radially aligned shells with small dimples. The resulting bipolar LC polymer shells collapse into a biconcave shape. Polarized optical microscopy and transmission electron microscopy indicate that the collapse occurs at the defect points in the shell. In the case of a lower crosslink density, LC polymer hollow shells with larger dimples are obtained, resulting in cup-shaped polymer particles. Biconcave LC polymer shells based on other LC mixtures have also been prepared, showing the versatility of the seeded dispersion polymerization method.

8.
Chemistry ; 27(57): 14168-14178, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34320258

RESUMEN

Liquid-crystalline polymer particles prepared by classical polymerization techniques are receiving increased attention as promising candidates for use in a variety of applications including micro-actuators, structurally colored objects, and absorbents. These particles have anisotropic molecular order and liquid-crystalline phases that distinguish them from conventional polymer particles. In this minireview, the preparation of liquid-crystalline polymer particles from classical suspension, (mini-)emulsion, dispersion, and precipitation polymerization reactions are discussed. The particle sizes, molecular orientations, and liquid-crystalline phases produced by each technique are summarized and compared. We conclude with a discussion of the challenges and prospects of the preparation of liquid-crystalline polymer particles by classical polymerization techniques.

9.
Macromol Rapid Commun ; 42(1): e2000476, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33428308

RESUMEN

A new mechanophore for polyurethane thermoplastic elastomers based on ion-paired complexes is developed. 8-(2-hydroxyethoxy)pyrene-1,3,6-trisulfonate (HEPTS) is incorporated into polyurethanes as an end-capper and aggregates in apolar media. Aggregation of the ionic HEPTS end groups in solution depends on concentration solvent polarity. The addition of dimethylformamide to a tetrahydrofuran solution of the polymer results in the dissociation of the aggregates and a significant shift in fluorescence emission from yellow to blue. The same shift in fluorescence emission is induced by stretching the solid polymer at strains larger than 1 and stresses above 7.5 MPa, with a clear increase above 12.5 MPa. Strain induced dissociation of HEPTS aggregates not attached to the polymer chain leads to fluorescence changes that are much less reproducible.


Asunto(s)
Elastómeros , Poliuretanos , Arilsulfonatos , Polímeros
10.
Soft Matter ; 16(21): 4908-4911, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32452499

RESUMEN

Narrowly dispersed, 10 micron-sized, liquid crystalline elastomer polymer actuators were first prepared via thiol-ene dispersion polymerization and then embedded and stretched in a polyvinyl alcohol film, followed by photopolymerization of the residual acrylate groups. Prolate micro spheroids in which the mesogens are aligned parallel to the long axis were obtained and showed reversible thermally driven actuation owing to nematic to isotropic transition of the liquid crystal molecules. The particles were also compressed to form disk-shaped oblate microactuators in which the mesogens are aligned perpendicular to the short axis, demonstrating that the reported method is a versatile method to fabricate liquid crystal elastomer microactuators with programmable properties.

11.
ACS Macro Lett ; 9(2): 272-277, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35638690

RESUMEN

Dynamic covalent bonds in a polymer network lead to plasticity, reshapability, and potential recyclability at elevated temperatures in combination with solvent-resistance and better dimensional stability at lower temperatures. Here we report a simple one-step procedure for the catalyst-free preparation and intramolecularly catalyzed stress-relaxation of dynamic polyester networks. The procedure is based on the coupling of branched OH-end functional polyesters (functionality ≥ 3) by pyromellitic dianhydride (PMDA) or 2,5-bis(methoxy-carbonyl) benzenesulfonic acid resulting in ester linkages with, respectively, a COOH or a SO3H group in a position ortho to the ester bond. This approach leads to an efficient external catalyst-free dynamic polyester network, in which the topology rearrangements occur via a dissociative mechanism involving anhydrides. The SO3H-containing network is particularly interesting, as it shows the fastest stress relaxation and does not suffer from unwanted additional transesterification reactions, as was observed in the COOH-containing network.

12.
ACS Macro Lett ; 9(12): 1753-1758, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35653678

RESUMEN

Dynamic covalent networks are a class of polymeric materials that combine the merits of classical thermosets and thermoplastics, in terms of mechanical properties and reprocessability, in one material. Various dynamic covalent chemistries have thus been implemented in polymeric materials with recent interests shifting toward chemistries that would allow rearrangements in network topology without the aid of external catalysts. Here we introduce transesterification in phosphate triesters as a new dynamic covalent chemistry in polymeric networks. A simple one-step synthetic strategy has been utilized to synthesize polytetrahydrofuran networks with phosphate triester cross-links. The materials showed finite viscous flow at elevated temperatures via transesterification at the cross-links without externally added catalyst. This approach provides an easy method for cross-linking OH-end-functionalized polyethers and has the potential for general use with other OH-functionalized polymers.

13.
Macromolecules ; 52(21): 8339-8345, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31736513

RESUMEN

The production of liquid crystalline (LC) polymer particles with a narrow size distribution on a large scale remains a challenge. Here, we report the preparation of monodisperse, cross-linked liquid crystalline particles via precipitation polymerization. This versatile and scalable method yields polymer particles with a smectic liquid crystal order. Although the LC monomers are randomly dissolved in solution, the oligomers self-align and LC order is induced. For the polymerization, a smectic LC monomer mixture consisting of cross-linkers and benzoic acid hydrogen-bonded dimers is used. The average diameter of the particles increases at higher polymerization temperatures and in better solvents, whereas the monomer and initiator concentration have only minor impact on the particle size. After deprotonating of the benzoic acid groups, the particles show rapid absorption of a common cationic dye, methylene blue. The methylene blue in the particles can be subsequently released with the addition of Ca2+, while monovalent ions fail to trigger the release. These results reveal that precipitation polymerization is an attractive method to prepare functional LC polymer particles of a narrow size distribution and on a large scale.

14.
J Am Chem Soc ; 141(32): 12522-12526, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31348858

RESUMEN

Polypeptide nanoparticles were obtained by the miniemulsion polymerization of S-(o-nitrobenzyl)-l-cysteine (NBC) N-carboxyanhydride (NCA). Through process optimization, reaction conditions were identified that allowed the polymerization of the water sensitive NCA to yield nanoparticles of about 220 nm size. Subsequent UV-irradiation of the nanoparticle emulsions caused the in situ removal of the nitrobenzyl group and particle cross-linking through disulfide bond formation accompanied by the shrinkage of the particles.

15.
Macromolecules ; 52(24): 9476-9483, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31894161

RESUMEN

Different types of butyl acrylate (BA)-co-acrylic acid (AA) oligomers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization and mixed with extruded 200 nm dimethyldioctadecylammonium bromide vesicles. The resulting precursor structures form the basis for subsequent vesicle-templated polymerizations. Systematic variations in temperature, pH, oligomer length, and oligomer composition and their effects on precursor morphology were studied. Surprisingly, different morphologies were obtained, including capsules, protruded capsules, solid spheres, and multicompartment structures. For example, capsules and multicompartment structures were found to result from higher AA contents, and protruded capsules and solid particles resulted from lower AA contents. Subsequent chain extension of the RAFT oligomers resulted in polymer nanostructures resembling the precursor morphologies.

16.
Macromol Rapid Commun ; 39(19): e1800356, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30062837

RESUMEN

Although the network dynamics and mechanical properties of poly(butylene terephthalate) vitrimers can to some extent be controlled via chemical and physical approaches, it remains a challenge to be able to process PBT vitrimers with the same processing conditions via, for example, injection molding as neat PBT. Here, it is shown that the use of protected pentaerythritol as a latent cross-linker and the use of a Zn(II) transesterification catalyst allows for the in situ dynamic network formation in PBT during processing, with a delayed onset of gelation. This process can be controlled by adjusting the processing temperature, (protected) cross-linker content, and the type of protection group. This solvent-free deprotection strategy opens the way to high production rates of PBT vitrimer products via injection molding with the combination of low viscosity during processing and vitrimer characteristics in the final product.


Asunto(s)
Calor , Tereftalatos Polietilenos/química , Zinc/química
17.
ACS Macro Lett ; 5(9): 995-998, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35614648

RESUMEN

Optical reporting of covalent bond scission in self-assembled structures in water is an important step toward the detection of forces in biological systems. Here we show that micelles of a diblock copolymer comprising hydrophobic poly(butyl acrylate) and hydrophilic poly(acrylic acid) blocks connected by an off-center mechanoresponsive moiety are mechanochemically active when sonicated in aqueous solution. Facile optical read-out of the force-activation is warranted by formation of a blue-fluorescent anthracene cleavage from the mechanophore, an anthracene-maleimide Diels-Alder adduct. In contrast to the efficient bond scission when the block copolymers are noncovalently anchored in liquid-like micellar cores, isolated unimers in solution are not activated by ultrasonication because the dimensions and viscous drag are drastically lower. These results demonstrate that covalent mechanochemistry can be enabled by noncovalent interactions.

18.
Langmuir ; 31(44): 11982-8, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26491888

RESUMEN

We synthesize two differently sized poly(methyl methacrylate-co-tert-butyl acrylate) latexes by emulsion polymerization and mix these with a sonicated single-walled carbon nanotube (SWCNT) dispersion, in order to prepare 3% SWCNT composite mixtures. We spin-coat these mixtures at various spin-speed rates and spin times over a glass substrate, producing a thin, transparent, solid, conductive layer. Keeping the amount of SWCNTs constant, we vary the weight fraction of our smaller 30-nm latex particles relative to the larger 70-nm-sized ones. We find a maximum in the electrical conductivity up to 370 S/m as a function of the weight fraction of smaller particles, depending on the overall solid content, the spin speed, and the spin time. This maximum occurs at 3-5% of the smaller latex particles. We also find a more than 2-fold increase in conductivity parallel to the radius of spin-coating than perpendicular to it. Atomic force microscopy points at the existence of lanes of latex particles in the spin-coated thin layer, while large-area transmission electron microscopy demonstrates that the SWCNTs are aligned over a grid fixed on the glass substrate during the spin-coating process. We extract the conductivity distribution on the surface of the thin film and translate this into the direction of the SWCNTs in it.

19.
Biomacromolecules ; 16(1): 295-303, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25438196

RESUMEN

Polymers with quaternary ammonium groups such as quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMAQ) have been used as antimicrobial agents because of their demonstrated good antimicrobial activities against a huge number and types of microbes, although their cytotoxicity is also well-known. In this work block copolymers based on PDMAEMAQ were synthesized containing hydrophobic segments of poly(butyl methacrylate) to improve the antimicrobial activity and glycomonomer units with the aim of decreasing the cytotoxicity of the polymers. Hydrophobic butyl methacrylate (BMA) blocks were chain extended by statistical and block copolymers of DMAEMA and 2-{[(d-glucosamin-2-N-yl)carbonylethyl methacrylate (HEMAGl) glycomonomer of different compositions. In order to find the balance between antimicrobial activity and cytotoxicity, the selectivity index of each polymer was obtained from minimum inhibitory concentrations (MIC) and white and red blood cells toxicity measurements.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Metacrilatos/farmacología , Nylons/farmacología , Antiinfecciosos/síntesis química , Eritrocitos/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Leucocitos/efectos de los fármacos , Metacrilatos/síntesis química , Pruebas de Sensibilidad Microbiana , Nylons/síntesis química , Polímeros/química , Polímeros/farmacología
20.
Macromol Rapid Commun ; 33(9): 827-32, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22488670

RESUMEN

The ability of merging the properties of poly(2-oxazoline)s and poly(ethylene imine) is of high interest for various biomedical applications, including gene delivery, biosensors, and switchable surfaces and nanoparticles. In the present research, a methodology for the controlled and selective hydrolysis of (co)poly(2-oxazoline)s is developed in an ethanol-water solvent mixture, opening the path toward a wide range of block poly(2-oxazoline-co-ethylene imine) (POx-PEI) copolymers with tunable properties. The unexpected influence of the selected ethanol-water binary solvent mixture on the hydrolysis kinetics and selectivity is highlighted in the pursue of well-defined POx-PEI block copolymers.


Asunto(s)
Iminas/síntesis química , Oxazoles/química , Poliaminas/química , Polietilenos/síntesis química , Polímeros/química , Etanol/química , Hidrólisis , Iminas/química , Cinética , Polietilenos/química , Solventes/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA