Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lancet Microbe ; 5(6): e570-e580, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734030

RESUMEN

BACKGROUND: Bacterial diversity could contribute to the diversity of tuberculosis infection and treatment outcomes observed clinically, but the biological basis of this association is poorly understood. The aim of this study was to identify associations between phenogenomic variation in Mycobacterium tuberculosis and tuberculosis clinical features. METHODS: We developed a high-throughput platform to define phenotype-genotype relationships in M tuberculosis clinical isolates, which we tested on a set of 158 drug-sensitive M tuberculosis strains sampled from a large tuberculosis clinical study in Ho Chi Minh City, Viet Nam. We tagged the strains with unique genetic barcodes in multiplicate, allowing us to pool the strains for in-vitro competitive fitness assays across 16 host-relevant antibiotic and metabolic conditions. Relative fitness was quantified by deep sequencing, enumerating output barcode read counts relative to input normalised values. We performed a genome-wide association study to identify phylogenetically linked and monogenic mutations associated with the in-vitro fitness phenotypes. These genetic determinants were further associated with relevant clinical outcomes (cavitary disease and treatment failure) by calculating odds ratios (ORs) with binomial logistic regressions. We also assessed the population-level transmission of strains associated with cavitary disease and treatment failure using terminal branch length analysis of the phylogenetic data. FINDINGS: M tuberculosis clinical strains had diverse growth characteristics in host-like metabolic and drug conditions. These fitness phenotypes were highly heritable, and we identified monogenic and phylogenetically linked variants associated with the fitness phenotypes. These data enabled us to define two genetic features that were associated with clinical outcomes. First, mutations in Rv1339, a phosphodiesterase, which were associated with slow growth in glycerol, were further associated with treatment failure (OR 5·34, 95% CI 1·21-23·58, p=0·027). Second, we identified a phenotypically distinct slow-growing subclade of lineage 1 strains (L1.1.1.1) that was associated with cavitary disease (OR 2·49, 1·11-5·59, p=0·027) and treatment failure (OR 4·76, 1·53-14·78, p=0·0069), and which had shorter terminal branch lengths on the phylogenetic tree, suggesting increased transmission. INTERPRETATION: Slow growth under various antibiotic and metabolic conditions served as in-vitro intermediate phenotypes underlying the association between M tuberculosis monogenic and phylogenetically linked mutations and outcomes such as cavitary disease, treatment failure, and transmission potential. These data suggest that M tuberculosis growth regulation is an adaptive advantage for bacterial success in human populations, at least in some circumstances. These data further suggest markers for the underlying bacterial processes that contribute to these clinical outcomes. FUNDING: National Health and Medical Research Council/A∗STAR, National Institutes of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the Wellcome Trust Fellowship in Public Health and Tropical Medicine.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Vietnam/epidemiología , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Estudio de Asociación del Genoma Completo , Resultado del Tratamiento , Fenotipo , Filogenia , Mutación , Fenómica , Genotipo , Femenino , Adulto , Masculino
2.
PLoS Pathog ; 20(2): e1012050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422159

RESUMEN

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Deshidrogenasa , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA