Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brachytherapy ; 21(6): 956-967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35902335

RESUMEN

PURPOSE: To quantify dose delivery errors for high-dose-rate image-guided brachytherapy (HDR-IGBT) using an independent end-to-end dose delivery quality assurance test at multiple institutions. The novelty of our study is that this is the first multi-institutional end-to-end dose delivery study in the world. MATERIALS AND METHODS: The postal audit used a polymer gel dosimeter in a cylindrical acrylic container for the afterloading system. Image acquisition using computed tomography, treatment planning, and irradiation were performed at each institution. Dose distribution comparison between the plan and gel measurement was performed. The percentage of pixels satisfying the absolute-dose gamma criterion was reviewed. RESULTS: Thirty-five institutions participated in this study. The dose uncertainty was 3.6% ± 2.3% (mean ± 1.96σ). The geometric uncertainty with a coverage factor of k = 2 was 3.5 mm. The tolerance level was set to the gamma passing rate of 95% with the agreement criterion of 5% (global)/3 mm, which was determined from the uncertainty estimation. The percentage of pixels satisfying the gamma criterion was 90.4% ± 32.2% (mean ± 1.96σ). Sixty-six percent (23/35) of the institutions passed the verification. Of the institutions that failed the verification, 75% (9/12) had incorrect inputs of the offset between the catheter tip and indexer length in treatment planning and 17% (2/12) had incorrect catheter reconstruction in treatment planning. CONCLUSIONS: The methodology should be useful for comprehensively checking the accuracy of HDR-IGBT dose delivery and credentialing clinical studies. The results of our study highlight the high risk of large source positional errors while delivering dose for HDR-IGBT in clinical practices.


Asunto(s)
Braquiterapia , Humanos , Braquiterapia/métodos , Dosificación Radioterapéutica , Dosímetros de Radiación , Catéteres , Tomografía Computarizada por Rayos X , Radiometría/métodos , Fantasmas de Imagen
2.
Artículo en Japonés | MEDLINE | ID: mdl-31434844

RESUMEN

Commissioning of a linear accelerator (Linac) and treatment planning systems (RTPs) for clinical use is complex and time-consuming, typically 3-4 months in total. However, based on clinical needs and economics, hospitals desire early clinical starts for patients, and various studies have been conducted for shortening the preparation period. One of the methods to shorten the period is using golden beam data (GBD). The purpose of this study was to shorten the commissioning period without reducing accuracy and to simplify commissioning works while improving safety. We conducted commissioning of the RTPs before installing the Linac using GBD, and carried out verification immediately after the acceptance test. We used TrueBeam STx (Varian Medical Systems) and Eclipse (ver. 13.7, Varian Medical Systems) for RTPs and anisotropic analysis algorithm (AAA) and AcurosXB (AXB) for calculation algorithms. The difference between GBD and the measured beam data was 0.0 ± 0.2% [percentage depth dose (PDDs) ] and -0.1 ± 0.2% (Profiles) with X-ray, and -1.2 ± 1.3% (PDDs) with electrons. The difference between the calculated dose and the measured dose was 0.1 ± 0.3% (AAA) and 0.0 ± 0.3% (AXB) under homogeneous conditions, and 0.7 ± 1.4% (AAA) and 0.6 ± 1.1% (AXB) under heterogeneous conditions. We took 43 days from the end of the acceptance test to the start of clinical use. We found that the preparation period for clinical use can be shortened without reducing the accuracy, by thinning out the number of measurement items using GBD.


Asunto(s)
Aceleradores de Partículas , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Algoritmos , Electrones , Humanos , Método de Montecarlo , Dosificación Radioterapéutica
3.
Analyst ; 137(9): 2006-10, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22337326

RESUMEN

We analyzed oligonucleotides by nanoparticle-assisted laser desorption/ionization (nano-PALDI) mass spectrometry (MS). To this end, we prepared several kinds of nanoparticles (Cr-, Fe-, Mn-, Co-based) and optimized the nano-PALDI MS method to analyze the oligonucleotides. Iron oxide nanoparticles with diammonium hydrogen citrate were found to serve as an effective ionization-assisting reagent in MS. The mass spectra showed both [M - H](-) and [M + xMe(2+)- H](-) (Me: transition metal) peaks. The number of metal-adducted ion signals depended on the length of the oligonucleotide. This phenomenon was only observed using bivalent metal core nanoparticles, not with any other valency metal core nanoparticles. Our pilot study demonstrated that iron oxide nanoparticles could easily ionize samples such as chemical drugs and peptides as well as oligonucleotides without the aid of an oligonucleotide-specific chemical matrix (e.g., 3-hydroxypicolinic acid) used in conventional MS methods. These results suggested that iron-based nanoparticles may serve as the assisting material of ionization for genes and other biomolecules.


Asunto(s)
Rayos Láser , Espectrometría de Masas/métodos , Nanopartículas/química , Oligonucleótidos/análisis , Secuencia de Bases , ADN/análisis , ADN/química , ADN/genética , Oligonucleótidos/química , Oligonucleótidos/genética , Óxidos/química , ARN/análisis , ARN/química , ARN/genética , Elementos de Transición/química
4.
Anal Chem ; 83(4): 1370-4, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21261259

RESUMEN

To functionalize the surface of nanoparticles with phenyl groups for subsequent cross-linking with aromatic molecules by mutual interactions, we prepared functional nanoparticles (d = 3 nm) by silanization with phenyl-triethoxysilane. The nanoparticles had Fe(2)O(3) cores conjugated to phenyl groups; this was confirmed by Fourier transform infrared (FT-IR) spectroscopy and absorption spectrophotometry. The typical C-H and C-C peaks and the absorption at 240 nm, which corresponds to aromatic rings, were detected in the spectroscopic results for the phenyl group-modified nanoparticles. The nanoparticles could ionize aromatic (colchicine, reserpine, and bradykinin peptide) and nonaromatic (L-α-phosphatidylethanolamine,dioleoyl, and polyethylene glycol) molecules by nanoparticle-assisted laser desorption/ionization mass spectrometry. The nanoparticles worked as a selective trap and an ionization-assisting reagent in mass spectrometry for the aromatic molecular targets.


Asunto(s)
Benceno/química , Nanopartículas/química , Nanotecnología/métodos , Absorción , Compuestos Férricos/química , Espectrometría de Masas , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA