Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37237692

RESUMEN

Recently, it was reported that chitin and chitosan exhibited high-proton conductivity and function as an electrolyte in fuel cells. In particular, it is noteworthy that proton conductivity in the hydrated chitin becomes 30 times higher than that in the hydrated chitosan. Since higher proton conductivity is necessary for the fuel cell electrolyte, it is significantly important to clarify the key factor for the realization of higher proton conduction from a microscopic viewpoint for the future development of fuel cells. Therefore, we have measured proton dynamics in the hydrated chitin using quasi-elastic neutron scattering (QENS) from the microscopic viewpoint and compared the proton conduction mechanism between hydrated chitin and chitosan. QENS results exhibited that a part of hydrogen atoms and hydration water in chitin are mobile even at 238 K, and the mobile hydrogen atoms and their diffusion increase with increasing temperature. It was found that the diffusion constant of mobile protons is two times larger and that the residence time is two times faster in chitin than that in chitosan. In addition, it is revealed from the experimental results that the transition process of dissociable hydrogen atoms between chitin and chitosan is different. To realize proton conduction in the hydrated chitosan, the hydrogen atoms of the hydronium ions (H3O+) should be transferred to another hydration water. By contrast, in hydrated chitin, the hydrogen atoms can transfer directly to the proton acceptors of neighboring chitin. It is deduced that higher proton conductivity in the hydrated chitin compared with that in the hydrated chitosan is yielded by the difference of diffusion constant and the residence time by hydrogen-atom dynamics and the location and number of proton acceptors.

2.
eNeuro ; 10(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36941061

RESUMEN

Loss-of-function mutations in Reelin and DAB1 signaling pathways disrupt proper neuronal positioning in the cerebral neocortex and hippocampus, but the underlying molecular mechanisms remain elusive. Here, we report that heterozygous yotari mice harboring a single autosomal recessive yotari mutation of Dab1 exhibited a thinner neocortical layer 1 than wild-type mice on postnatal day (P)7. However, a birth-dating study suggested that this reduction was not caused by failure of neuronal migration. In utero electroporation-mediated sparse labeling revealed that the superficial layer neurons of heterozygous yotari mice tended to elongate their apical dendrites within layer 2 than within layer 1. In addition, the CA1 pyramidal cell layer in the caudo-dorsal hippocampus was abnormally split in heterozygous yotari mice, and a birth-dating study revealed that this splitting was caused mainly by migration failure of late-born pyramidal neurons. Adeno-associated virus (AAV)-mediated sparse labeling further showed that many pyramidal cells within the split cell had misoriented apical dendrites. These results suggest that regulation of neuronal migration and positioning by Reelin-DAB1 signaling pathways has unique dependencies on Dab1 gene dosage in different brain regions.


Asunto(s)
Mutación con Pérdida de Función , Neocórtex , Proteínas del Tejido Nervioso , Animales , Ratones , Hipocampo/metabolismo , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología
3.
J Neurosci ; 43(5): 693-708, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631266

RESUMEN

The claustrum (CLA) is a cluster of neurons located between the insular cortex and striatum. Many studies have shown that the CLA plays an important role in higher brain function. Additionally, growing evidence suggests that CLA dysfunction is associated with neuropsychological symptoms. However, how the CLA is formed during development is not fully understood. In the present study, we analyzed the development of the CLA, especially focusing on the migration profiles of CLA neurons in mice of both sexes. First, we showed that CLA neurons were generated between embryonic day (E) 10.5 and E12.5, but mostly at E11.5. Next, we labeled CLA neurons born at E11.5 using the FlashTag technology and revealed that most neurons reached the brain surface by E13.5 but were distributed deep in the CLA 1 d later at E14.5. Time-lapse imaging of GFP-labeled cells revealed that some CLA neurons first migrated radially outward and then changed their direction inward after reaching the surface. Moreover, we demonstrated that Reelin signal is necessary for the appropriate distribution of CLA neurons. The switch from outward to "reversed" migration of developing CLA neurons is distinct from other migration modes, in which neurons typically migrate in a certain direction, which is simply outward or inward. Future elucidation of the characteristics and precise molecular mechanisms of CLA development may provide insights into the unique cognitive functions of the CLA.SIGNIFICANCE STATEMENT The claustrum (CLA) plays an important role in higher brain function, and its dysfunction is associated with neuropsychological symptoms. Although psychiatric disorders are increasingly being understood as disorders of neurodevelopment, little is known about CLA development, including its neuronal migration profiles and underlying molecular mechanisms. Here, we investigated the migration profiles of CLA neurons during development and found that they migrated radially outward and then inward after reaching the surface. This switch in the migratory direction from outward to inward may be one of the brain's fundamental mechanisms of nuclear formation. Our findings enable us to investigate the relationship between CLA maldevelopment and dysfunction, which may facilitate understanding of the pathogenesis of some psychiatric disorders.


Asunto(s)
Claustro , Femenino , Masculino , Ratones , Animales , Claustro/fisiología , Neuronas/fisiología , Movimiento Celular/fisiología , Cuerpo Estriado , Neurogénesis
4.
Nat Commun ; 13(1): 6571, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323680

RESUMEN

Astrocytes are one of the most abundant cell types in the mammalian brain. They play essential roles in synapse formation, maturation, and elimination. However, how astrocytes migrate into the gray matter to accomplish these processes is poorly understood. Here, we show that, by combinational analyses of in vitro and in vivo time-lapse observations and lineage traces, astrocyte progenitors move rapidly and irregularly within the developing cortex, which we call erratic migration. Astrocyte progenitors also adopt blood vessel-guided migration. These highly motile progenitors are generated in the restricted prenatal stages and differentiate into protoplasmic astrocytes in the gray matter, whereas postnatally generated progenitors do not move extensively and differentiate into fibrous astrocytes in the white matter. We found Cxcr4/7, and integrin ß1 regulate the blood vessel-guided migration, and their functional blocking disrupts their positioning. This study provides insight into astrocyte development and may contribute to understanding the pathogenesis caused by their defects.


Asunto(s)
Astrocitos , Corteza Cerebral , Animales , Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Encéfalo/metabolismo , Integrina beta1/metabolismo , Transducción de Señal , Mamíferos/metabolismo
5.
Bioengineering (Basel) ; 9(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36290566

RESUMEN

Chitosan, an environmentally friendly and highly bio-producible material, is a potential proton-conducting electrolyte for use in fuel cells. Thus, to microscopically elucidate proton transport in hydrated chitosan, we employed the quasi-elastic neutron scattering (QENS) technique. QENS analysis showed that the hydration water, which was mobile even at 238 K, moved significantly more slowly than the bulk water, in addition to exhibiting jump diffusion. Furthermore, upon increasing the temperature from 238 to 283 K, the diffusion constant of water increased from 1.33 × 10-6 to 1.34 × 10-5 cm2/s. It was also found that a portion of the hydrogen atoms in chitosan undergo a jump-diffusion motion similar to that of the hydrogen present in water. Moreover, QENS analysis revealed that the activation energy for the jump-diffusion of hydrogen in chitosan and in the hydration water was 0.30 eV, which is close to the value of 0.38 eV obtained from the temperature-dependent proton conductivity results. Overall, it was deduced that a portion of the hydrogen atoms in chitosan dissociate and protonate the interacting hydration water, resulting in the chitosan exhibiting proton conductivity.

6.
Neurochem Res ; 47(9): 2741-2756, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35622214

RESUMEN

One of the key areas in stem cell research is the identification of factors capable of promoting the expansion of Neural Stem Cell/Progenitor Cells (NSPCs) and understanding their molecular mechanisms for future use in clinical settings. We previously identified Macrophage Migration Inhibitory Factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs based on in vitro functional cloning strategy and revealed that MIF can support the proliferation of human brain tumor-initiating cells (BTICs). However, the detailed downstream signaling for the functions has largely remained unknown. Thus, in the present study, we newly identified translationally-controlled tumor protein-1 (TPT1), which is expressed in the ventricular zone of mouse embryonic brain, as a downstream target of MIF signaling in mouse and human NSPCs and human BTICs. Using gene manipulation (over or downregulation of TPT1) techniques including CRISPR/Cas9-mediated heterozygous gene disruption showed that TPT1 contributed to the regulation of cell proliferation/survival in mouse NSPCs, human embryonic stem cell (hESC) derived-NSPCs, human-induced pluripotent stem cells (hiPSCs) derived-NSPCs and BTICs. Furthermore, gene silencing of TPT1 caused defects in neuronal differentiation in the NSPCs in vitro. We also identified the MIF-CHD7-TPT1-SMO signaling axis in regulating hESC-NSPCs and BTICs proliferation. Intriguingly, TPT1suppressed the miR-338 gene, which targets SMO in hESC-NSPCs and BTICs. Finally, mice with implanted BTICs infected with lentivirus-TPT1 shRNA showed a longer overall survival than control. These results also open up new avenues for the development of glioma therapies based on the TPT1 signaling pathway.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Células Madre Neoplásicas , Células-Madre Neurales , Proteína Tumoral Controlada Traslacionalmente 1 , Animales , Encéfalo/metabolismo , Proliferación Celular/fisiología , Humanos , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Proteína Tumoral Controlada Traslacionalmente 1/genética
7.
Sci Rep ; 11(1): 22110, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764346

RESUMEN

Radiation therapy is one of standard treatment for malignant glioma after surgery. The microenvironment after irradiation is considered not to be suitable for the survival of tumor cells (tumor bed effect). This study investigated whether the effect of changes in the microenvironment of parenchymal brain tissue caused by radiotherapy affect the recurrence and progression of glioma. 65-Gy irradiation had been applied to the right hemisphere of Fisher rats. After 3 months from irradiation, we extracted RNA and protein from the irradiated rat brain. To study effects of proteins extracted from the brains, we performed WST-8 assay and tube formation assay in vitro. Cytokine production were investigated for qPCR. Additionally, we transplanted glioma cell into the irradiated and sham animals and the median survival time of F98 transplanted rats was also examined in vivo. Immunohistochemical analyses and invasiveness of implanted tumor were evaluated. X-ray irradiation promoted the secretion of cytokines such as CXCL12, VEGF-A, TGF-ß1 and TNFα from the irradiated brain. Proteins extracted from the irradiated brain promoted the proliferation and angiogenic activity of F98 glioma cells. Glioma cells implanted in the irradiated brains showed significantly high proliferation, angiogenesis and invasive ability, and the post-irradiation F98 tumor-implanted rats showed a shorter median survival time compared to the Sham-irradiation group. The current study suggests that the microenvironment around the brain tissue in the chronic phase after exposure to X-ray radiation becomes suitable for glioma cell growth and invasion.


Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/patología , Encéfalo/efectos de la radiación , Glioma/patología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Masculino , Dosis de Radiación , Oncología por Radiación/métodos , Dosificación Radioterapéutica , Ratas , Ratas Endogámicas F344 , Microambiente Tumoral/efectos de la radiación
9.
Sci Transl Med ; 13(587)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790026

RESUMEN

The lateral ventricle (LV) is flanked by the subventricular zone (SVZ), a neural stem cell (NSC) niche rich in extrinsic growth factors regulating NSC maintenance, proliferation, and neuronal differentiation. Dysregulation of the SVZ niche causes LV expansion, a condition known as hydrocephalus; however, the underlying pathological mechanisms are unclear. We show that deficiency of the proteoglycan Tsukushi (TSK) in ependymal cells at the LV surface and in the cerebrospinal fluid results in hydrocephalus with neurodevelopmental disorder-like symptoms in mice. These symptoms are accompanied by altered differentiation and survival of the NSC lineage, disrupted ependymal structure, and dysregulated Wnt signaling. Multiple TSK variants found in patients with hydrocephalus exhibit reduced physiological activity in mice in vivo and in vitro. Administration of wild-type TSK protein or Wnt antagonists, but not of hydrocephalus-related TSK variants, in the LV of TSK knockout mice prevented hydrocephalus and preserved SVZ neurogenesis. These observations suggest that TSK plays a crucial role as a niche molecule modulating the fate of SVZ NSCs and point to TSK as a candidate for the diagnosis and therapy of hydrocephalus.


Asunto(s)
Hidrocefalia , Células-Madre Neurales , Neurogénesis , Proteoglicanos , Animales , Proliferación Celular , Humanos , Ratones , Ratones Noqueados , Nicho de Células Madre
10.
J Neurosci ; 40(43): 8248-8261, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33009002

RESUMEN

Reelin plays versatile roles in neocortical development. The C-terminal region (CTR) of Reelin is required for the correct formation of the superficial structure of the neocortex; however, the mechanisms by which this position-specific effect occurs remain largely unknown. In this study, we demonstrate that Reelin with an intact CTR binds to neuropilin-1 (Nrp1), a transmembrane protein. Both male and female mice were used. Nrp1 is localized with very-low-density lipoprotein receptor (VLDLR), a canonical Reelin receptor, in the superficial layers of the developing neocortex. It forms a complex with VLDLR, and this interaction is modulated by the alternative splicing of VLDLR. Reelin with an intact CTR binds more strongly to the VLDLR/Nrp1 complex than to VLDLR alone. Knockdown of Nrp1 in neurons leads to the accumulation of Dab1 protein. Since the degradation of Dab1 is induced by Reelin signaling, it is suggested that Nrp1 augments Reelin signaling. The interaction between Reelin and Nrp1 is required for normal dendritic development in superficial-layer neurons. All of these characteristics of Reelin are abrogated by proteolytic processing of the six C-terminal amino acid residues of Reelin (0.17% of the whole protein). Therefore, Nrp1 is a coreceptor molecule for Reelin and, together with the proteolytic processing of Reelin, can account for context-specific Reelin function in brain development.SIGNIFICANCE STATEMENT Reelin often exhibits a context-dependent function during brain development; however, its underlying mechanism is not well understood. We found that neuropilin-1 (Nrp1) specifically binds to the CTR of Reelin and acts as a coreceptor for very-low-density lipoprotein receptor (VLDLR). The Nrp1/VLDLR complex is localized in the superficial layers of the neocortex, and its interaction with Reelin is essential for proper dendritic development in superficial-layer neurons. This study provides the first mechanistic evidence of the context-specific function of Reelin (>3400 residues) regulated by the C-terminal residues and Nrp1, a component of the canonical Reelin receptor complex.


Asunto(s)
Dendritas/fisiología , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Neuropilina-1/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular , ADN/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/genética , Receptores de LDL/metabolismo , Proteína Reelina , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
11.
J Neurosci ; 40(40): 7625-7636, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32913108

RESUMEN

Oligodendrocyte (OL) progenitor cells (OPCs) are generated, proliferate, migrate, and differentiate in the developing brain. Although the development of OPCs is prerequisite for normal brain function, the molecular mechanisms regulating their development in the neocortex are not fully understood. Several molecules regulate the tangential distribution of OPCs in the developing neocortex, but the cue molecule(s) that regulate their radial distribution remains unknown. Here, we demonstrate that the secreted glycoprotein Reelin suppresses the proliferation of OPCs and acts as a repellent for their migration in vitro These functions rely on the binding of Reelin to its receptors and on the signal transduction involving the intracellular protein Dab1. In the late embryonic neocortex of mice with attenuated Reelin signaling [i.e., Reelin heterozygote-deficient, Dab1 heterozygote-deficient mutant, or very low-density lipoprotein receptor (VLDLR)-deficient mice], the number of OPCs increased and their distribution shifted toward the superficial layers. In contrast, the number of OPCs decreased and they tended to distribute in the deep layers in the neocortex of mice with abrogated inactivation of Reelin by proteolytic cleavage, namely a disintegrin and metalloproteinase with thrombospondin type 1 motifs 3 (ADAMTS-3)-deficient mice and cleavage-resistant Reelin knock-in mice. Both male and female animals were used. These data indicate that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic neocortex and that the regulation of Reelin function by its specific proteolysis is required for the normal development of OPCs.SIGNIFICANCE STATEMENT Here, we report that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic mouse neocortex. Oligodendrocyte (OL) progenitor cells (OPCs) express Reelin signaling molecules and respond to Reelin stimulation. Reelin-Dab1 signaling suppresses the proliferation of OPCs both in vitro and in vivo Reelin repels OPCs in vitro, and the radial distribution of OPCs is altered in mice with either attenuated or augmented Reelin-Dab1 signaling. This is the first report identifying the secreted molecule that plays a role in the radial distribution of OPCs in the late embryonic neocortex. Our results also show that the regulation of Reelin function by its specific proteolysis is important for the normal development of OPCs.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Oligodendroglía/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas ADAMTS/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Células Cultivadas , Proteínas de la Matriz Extracelular/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/embriología , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Oligodendroglía/citología , Unión Proteica , Receptores de LDL/metabolismo , Proteína Reelina , Serina Endopeptidasas/genética
12.
Development ; 147(12)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32540847

RESUMEN

In the developing neocortex, radially migrating neurons stop migration and form layers beneath the marginal zone (MZ). Reelin plays essential roles in these processes via its receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). Although we recently reported that reelin causes neuronal aggregation via ApoER2, which is thought to be important for the subsequent layer formation, it remains unknown what effect reelin exerts via the VLDLR. Here, we found that ectopic reelin overexpression in the Vldlr-mutant mouse cortex causes neuronal aggregation, but without an MZ-like cell-sparse central region that is formed when reelin is overexpressed in the normal cortex. We also found that both the early-born and late-born Vldlr-deficient neurons invade the MZ and exhibit impaired dendrite outgrowth from before birth. Rescue experiments indicate that VLDLR suppresses neuronal invasion into the MZ via a cell-autonomous mechanism, possibly mediated by Rap1, integrin and Akt. These results suggest that VLDLR is not a prerequisite for reelin-induced neuronal aggregation and that the major role of VLDLR is to suppress neuronal invasion into the MZ during neocortical development.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Corteza Cerebral/metabolismo , Dendritas/metabolismo , Embrión de Mamíferos/metabolismo , Proteínas de la Matriz Extracelular/genética , Integrina alfa5/metabolismo , Proteínas Relacionadas con Receptor de LDL/deficiencia , Proteínas Relacionadas con Receptor de LDL/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Piramidales/metabolismo , Receptores de LDL/deficiencia , Receptores de LDL/genética , Proteína Reelina , Serina Endopeptidasas/genética , Proteínas de Unión al GTP rap1/metabolismo
13.
Bioorg Med Chem ; 26(21): 5664-5671, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30366786

RESUMEN

CD4 mimics such as YIR-821 and its derivatives are small molecules which inhibit the interaction between the Phe43 cavity of HIV-1 gp120 with host CD4, an interaction that is involved in the entry of HIV to cells. Known CD4 mimics generally possess three structural features, an aromatic ring, an oxalamide linker and a piperidine moiety. We have shown previously that introduction of a cyclohexyl group and a guanidine group into the piperidine moiety and a fluorine atom at the meta-position of the aromatic ring leads to a significant increase in the anti-HIV activity. In the current study, the effects of conformational flexibility were investigated by introduction of an indole-type group in the junction between the oxalamide linker and the aromatic moiety or by replacement of the oxalamide linker with a glycine linker. This led to the development of compounds with high anti-HIV activity, showing the importance of the junction region for the expression of high anti-HIV activity. The present data are expected to be useful in the future design of novel CD4 mimic molecules.


Asunto(s)
Materiales Biomiméticos/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Inhibidores de Fusión de VIH/farmacología , Indoles/farmacología , Sitios de Unión , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/toxicidad , Antígenos CD4/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glicina/síntesis química , Glicina/toxicidad , Proteína gp120 de Envoltorio del VIH/química , Inhibidores de Fusión de VIH/síntesis química , Inhibidores de Fusión de VIH/química , Inhibidores de Fusión de VIH/toxicidad , VIH-1/química , Humanos , Indoles/síntesis química , Indoles/química , Indoles/toxicidad , Simulación del Acoplamiento Molecular , Docilidad
14.
Cereb Cortex ; 28(1): 223-235, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27909010

RESUMEN

Neuronal migration contributes to the establishment of mammalian brain. The extracellular protein Reelin sends signals to various downstream molecules by binding to its receptors, the apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor and exerts essential roles in the neuronal migration and formation of the layered neocortex. However, the cellular and molecular functions of Reelin signaling in the cortical development are not yet fully understood. Here, to gain insight into the role of Reelin signaling during cortical development, we examined the migratory behavior of Apoer2-deficient neurons in the developing brain. Stage-specific labeling of newborn neurons revealed that the neurons ectopically invaded the marginal zone (MZ) and that neuronal migration of both early- and late-born neurons was disrupted in the intermediate zone (IZ) in the Apoer2 KO mice. Rescue experiments showed that ApoER2 functions both in cell-autonomous and noncell-autonomous manners, that Rap1, integrin, and Akt are involved in the termination of migration beneath the MZ, and that Akt also controls neuronal migration in the IZ downstream of ApoER2. These data indicate that ApoER2 controls multiple processes in neuronal migration, including the early stage of radial migration and termination of migration beneath the MZ in the developing neocortex.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Neuronas/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Corteza Cerebral/citología , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Integrinas/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Reelina , Proteínas de Unión al GTP rap1/metabolismo
15.
Phys Chem Chem Phys ; 19(46): 31194-31201, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29139497

RESUMEN

Brownmillerite Ca2Fe2O5 (CFO) exhibits a magnetic transition at TN ∼ 730 K. Many studies have reported the magnetic properties of CFO. However, the magnetic structure of CFO is still debated, i.e., whether the magnetic ordering is purely antiferromagnetic or weakly ferromagnetic, which originated from canted magnetic moments. In addition, the reason for the CFO showing large magnetoresistance is still unclear. This study attempts to address the unresolved issues stated above by multiple investigations on the crystal structure, magnetization, and Mössbauer parameters. Based on the results of the investigation, we conclude that the CFO is not purely antiferromagnetic but weakly ferromagnetic. That is the reason for the disappearance of the spontaneous magnetization at the magnetic critical temperature TN. The Mössbauer spectroscopy shows that the magnetic moments slightly cant against the a-direction, resulting in the presence of a net magnetic moment along the c-direction under the space group of Pnma. A reason for the canted magnetic moments is due to the presence of the Dzyalosinskii-Moriya (DM) interaction. The electric field gradient (EFG) refined from the Mössbauer spectroscopy investigated at 287 K is larger than that at 750 K, which is higher than TN. This suggests that the EFG changes below TN. A local electric polarization induced by the DM interaction is a possible reason for the change in the EFG. As a result, strong correlations between the magnetic ordering and the electrical properties appear in the CFO. The Arrhenius plot of the total electrical conductivity showed a kink at TN, which is one of these strong correlations.

16.
Front Cell Dev Biol ; 5: 40, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28507985

RESUMEN

The mammalian cerebral neocortex has a well-organized laminar structure, achieved by the highly coordinated control of neuronal migration. During cortical development, excitatory neurons born near the lateral ventricle migrate radially to reach their final positions to form the cortical plate. During this process, dynamic changes are observed in the morphologies and migration modes, including multipolar migration, locomotion, and terminal translocation, of the newborn neurons. Disruption of these migration processes can result in neuronal disorders such as lissencephaly and periventricular heterotopia. The extracellular protein, Reelin, mainly secreted by the Cajal-Retzius neurons in the marginal zone during development, plays a crucial role in the neuronal migration and neocortical lamination. Reelin signaling, which exerts essential roles in the formation of the layered neocortex, is triggered by the binding of Reelin to its receptors, ApoER2 and VLDLR, followed by phosphorylation of the Dab1 adaptor protein. Accumulating evidence suggests that Reelin signaling controls multiple steps of neuronal migration, including the transition from multipolar to bipolar neurons, terminal translocation, and termination of migration beneath the marginal zone. In addition, it has been shown that ectopically expressed Reelin can cause neuronal aggregation via an N-cadherin-mediated manner. This review attempts to summarize our knowledge of the roles played by Reelin in neuronal migration and the underlying mechanisms.

17.
Neurochem Res ; 41(1-2): 222-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26572545

RESUMEN

In many animal species, the production of new neurons (neurogenesis) occurs throughout life, in a specialized germinal region called the ventricular-subventricular zone (V-SVZ). In this region, neural stem cells undergo self-renewal and generate neural progenitor cells and new neurons. In the olfactory system, the new neurons migrate rostrally toward the olfactory bulb, where they differentiate into mature interneurons. V-SVZ-derived new neurons can also migrate toward sites of brain injury, where they contribute to neural regeneration. Recent studies indicate that two major branches of the Wnt signaling pathway, the Wnt/ß-catenin and Wnt/planar cell polarity pathways, play essential roles in various facets of adult neurogenesis. Here, we review the Wnt signaling-mediated regulation of adult neurogenesis in the V-SVZ under physiological and pathological conditions.


Asunto(s)
Ventrículos Cerebrales/metabolismo , Neuronas/citología , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Polaridad Celular , Proliferación Celular , Ratones , beta Catenina/metabolismo
18.
Radiat Environ Biophys ; 55(1): 89-94, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26573366

RESUMEN

Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.


Asunto(s)
Terapia por Captura de Neutrón de Boro/efectos adversos , Daño del ADN , ADN Ligasa (ATP)/metabolismo , Reparación del ADN/efectos de la radiación , Animales , Línea Celular , Relación Dosis-Respuesta en la Radiación , Ratones , Factores de Tiempo
19.
Neurosci Res ; 96: 30-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25573715

RESUMEN

Reelin has recently attracted attention because of its connection to several neuropsychiatric diseases. We previously reported the finding that prior transplantation of GABAergic neuron precursor cells into the medial prefrontal cortex (mPFC) of mice significantly prevented the induction of cognitive and sensory-motor gating deficits induced by phencyclidine (PCP). The majority of the precursor cells transplanted into the mPFC of the recipient mice differentiated into members of a somatostatin/Reelin-expressing class of GABAergic interneurons. These findings raised the possibility that Reelin secreted by the transplanted cells plays an important role in preventing the deficits induced by PCP. In this study, we investigated whether Reelin itself has a preventive effect on PCP-induced behavioral phenotypes by injecting conditioned medium containing Reelin into the lateral ventricle of the brains of 6- to 7-week-old male mice before administrating PCP. Behavioral analyses showed that the prior Reelin injection had a preventive effect against induction of the cognitive and sensory-motor gating deficits associated with PCP. Moreover, one of the types of Reelin receptor was found to be expressed by neurons in the mPFC. The results of this study point to the Reelin signaling pathway as a candidate target for the pharmacologic treatment of neuropsychiatric diseases.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/administración & dosificación , Moléculas de Adhesión Celular Neuronal/metabolismo , Trastornos del Conocimiento/prevención & control , Proteínas de la Matriz Extracelular/administración & dosificación , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/administración & dosificación , Proteínas del Tejido Nervioso/metabolismo , Filtrado Sensorial/efectos de los fármacos , Serina Endopeptidasas/administración & dosificación , Serina Endopeptidasas/metabolismo , Animales , Trastornos del Conocimiento/inducido químicamente , Neuronas GABAérgicas , Infusiones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Neuronas/metabolismo , Fenciclidina/toxicidad , Corteza Prefrontal/metabolismo , Receptores de LDL/metabolismo , Proteína Reelina
20.
J Comp Neurol ; 523(3): 463-78, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25308109

RESUMEN

In mammalian developing brain, neuronal migration is regulated by a variety of signaling cascades, including Reelin signaling. Reelin is a glycoprotein that is mainly secreted by Cajal-Retzius neurons in the marginal zone, playing essential roles in the formation of the layered neocortex via its receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). However, the precise mechanisms by which Reelin signaling controls the neuronal migration process remain unclear. To gain insight into how Reelin signaling controls individual migrating neurons, we generated monoclonal antibodies against ApoER2 and VLDLR and examined the localization of Reelin receptors in the developing mouse cerebral cortex. Immunohistochemical analyses revealed that VLDLR is localized to the distal portion of leading processes in the marginal zone (MZ), whereas ApoER2 is mainly localized to neuronal processes and the cell membranes of multipolar cells in the multipolar cell accumulation zone (MAZ). These different expression patterns may contribute to the distinct actions of Reelin on migrating neurons during both the early and late migratory stages in the developing cerebral cortex.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Receptores de LDL/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes Neurológicos , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de LDL/genética , Proteína Reelina , Serina Endopeptidasas/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA