Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(4): 043803, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335352

RESUMEN

We introduce the concept of photonic flatband resonances and demonstrate it for an array of high-index dielectric particles. We employ the multiple Mie scattering theory and demonstrate that both short- and long-range interactions between the resonators are crucial for the emerging collective resonances and their associated photonic flatbands. By examining both near- and far-field characteristics, we uncover how the flatbands emerge due to a fine tuning of resonators' radiation fields, and predict that hybridization of a flatband resonance with an electric hot spot can lead to giant values of the Purcell factor for the electric dipolar emitters.

2.
Adv Sci (Weinh) ; 9(21): e2201180, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35666063

RESUMEN

The overall effectiveness of nonlinear optical processes along extended nonlinear media highly depends on the fulfillment of the phase-matching condition for pump and generated fields. This is traditionally accomplished by exploiting the birefringence of nonlinear crystals requiring long interaction lengths (cm-scale). For nonbirefringent media and integrated photonic devices, modal phase matching can compensate the index mismatch. Here, the various interacting waves propagate in transverse modes with appropriate phase velocities, but they suffer from a low refractive index contrast and cm-scale interaction lengths. This work harnesses modal phase matching for third-harmonic generation (THG) in plasmonic waveguides using an organic polymer (poly[3-hexylthiophene-2,5-diyl]) as the nonlinear medium. One demonstrates experimentally an effective interaction area as small as ≈ 0.11 µm2 and the phase-matched modal dispersion results in THG efficiency as high as ≈ 10-3 W-2 within an effective length scale of ≈ 4.3 µm. THG also shows a strong correlation with the polarization of the incident laser beam, corresponding to the excitation of the antisymmetric plasmonic modes, corroborating that plasmonic modal phase matching is achieved. This large reduction in device area of orders of magnitude is interesting for various applications where space is critical (e.g., device integration or on-chip applications).

3.
Small ; 18(1): e2105684, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741404

RESUMEN

To develop methods to generate, manipulate, and detect plasmonic signals by electrical means with complementary metal-oxide-semiconductor (CMOS)-compatible materials is essential to realize on-chip electronic-plasmonic transduction. Here, electrically driven, CMOS-compatible electronic-plasmonic transducers with Al-AlOX -Cu tunnel junctions as the excitation source of surface plasmon polaritons (SPPs) and Si-Cu Schottky diodes as the detector of SPPs, connected via plasmonic strip waveguides of Cu, are demonstrated. Remarkably, the electronic-plasmonic transducers exhibit overall transduction efficiency of 1.85 ± 0.03%, five times higher than previously reported transducers with two tunnel junctions (metal-insulator-metal (MIM)-MIM transducers) where SPPs are detected based on optical rectification. The result establishes a new platform to convert electronic signals to plasmonic signals via electrical means, paving the way toward CMOS-compatible plasmonic components.

4.
Light Sci Appl ; 10(1): 230, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750346

RESUMEN

Inelastic quantum mechanical tunneling of electrons across plasmonic tunnel junctions can lead to surface plasmon polariton (SPP) and photon emission. So far, the optical properties of such junctions have been controlled by changing the shape, or the type of the material, of the electrodes, primarily with the aim to improve SPP or photon emission efficiencies. Here we show that by tuning the tunneling barrier itself, the efficiency of the inelastic tunneling rates can be improved by a factor of 3. We exploit the anisotropic nature of hexagonal boron nitride (hBN) as the tunneling barrier material in Au//hBN//graphene tunnel junctions where the Au electrode also serves as a plasmonic strip waveguide. As this junction constitutes an optically transparent hBN-graphene heterostructure on a glass substrate, it forms an open plasmonic system where the SPPs are directly coupled to the dedicated strip waveguide and photons outcouple to the far field. We experimentally and analytically show that the photon emission rate per tunneling electron is significantly improved (~ ×3) in Au//hBN//graphene tunnel junction due to the enhancement in the local density of optical states (LDOS) arising from the hBN anisotropy. With the dedicated strip waveguide, SPP outcoupling efficiency is quantified and is found to be ∼ 80% stronger than the radiative outcoupling in Au//hBN//graphene due to the high LDOS of the SPP decay channel associated with the inelastic tunneling. The new insights elucidated here deepen our understanding of plasmonic tunnel junctions beyond the isotropic models with enhanced LDOS.

5.
Opt Express ; 29(8): 11987-12000, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984968

RESUMEN

Metal-insulator-metal tunnel junctions (MIM-TJs) can electrically excite surface plasmon polaritons (SPPs) well below the diffraction limit. When inelastically tunneling electrons traverse the tunnel barrier under applied external voltage, a highly confined cavity mode (MIM-SPP) is excited, which further out-couples from the MIM-TJ to photons and single-interface SPPs via multiple pathways. In this work we control the out-coupling pathways of the MIM-SPP mode by engineering the geometry of the MIM-TJ. We fabricated MIM-TJs with tunneling directions oriented vertical or lateral with respect to the directly integrated plasmonic strip waveguides. With control over the tunneling direction, preferential out-coupling of the MIM-SPP mode to SPPs or photons is achieved. Based on the wavevector distribution of the single-interface SPPs or photons in the far-field emission intensity obtained from back focal plane (BFP) imaging, we estimate the out-coupling efficiency of the MIM-SPP mode to multiple out-coupling pathways. We show that in the vertical-MIM-TJs the MIM-SPP mode preferentially out-couples to single-interface SPPs along the strip waveguides while in the lateral-MIM-TJs photon out-coupling to the far-field is more efficient.

6.
Nano Lett ; 20(8): 5655-5661, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32603127

RESUMEN

A highly efficient nanocavity formed by optically coupled nanostructures is achieved by optimization of the collective Mie resonances in a one-dimensional array of semiconductor nanoparticles. Analysis of quasi-normal multipole modes enables us to reveal the close relation between the collective Mie resonances and Van Hove singularities. On the basis of these concepts, we experimentally demonstrate a directional GaAs nanolaser at cryogenic temperatures with well-defined, in-plane emission, which, moreover, can be controlled by selective excitation. The lasing threshold is shown to be significantly reduced by optimizing the interparticle gap such that the optimal near-field confinement is achieved at a resonant wavelength corresponding to the highest gain of GaAs. We show that the lasing performance of this nanolaser is orders of magnitude better than a nanowire-based laser of the same dimensions. The present work provides design guidelines for high performance in-plane emission nanolasers, which may find applications in future photonic integrated circuits.

7.
Adv Sci (Weinh) ; 7(8): 1900291, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32328407

RESUMEN

Surface plasmon polaritons (SPPs) are viable candidates for integration into on-chip nano-circuitry that allow access to high data bandwidths and low energy consumption. Metal-insulator-metal tunneling junctions (MIM-TJs) have recently been shown to excite and detect SPPs electrically; however, experimentally measured efficiencies and outcoupling mechanisms are not fully understood. It is shown that the MIM-TJ cavity SPP mode (MIM-SPP) can outcouple via three pathways to i) photons via scattering of MIM-SPP at the MIM-TJ interfaces, ii) SPPs at the metal-dielectric interfaces (bound-SPPs) by mode coupling through the electrodes, and iii) photons and bound-SPP modes by mode coupling at the MIM-TJ edges. It is also shown that, for Al-AlO x -Cr-Au MIM-TJs on glass, the MIM-SPP mode outcouples efficiently to bound-SPPs through either electrode (pathway 2); this outcoupling pathway can be selectively turned on and off by changing the respective electrode thickness. Outcoupling at the MIM-TJ edges (pathway 3) is efficient and sensitive to the edge topography, whereas most light emission originates from roughness-induced scattering of the MIM-SPP mode (pathway 1). Using an arbitrary roughness profile, it is demonstrated that various roughness facets can raise MIM-SPP outcoupling efficiencies to 0.62%. These results pave the way for understanding the topographical parameters needed to develop CMOS-compatible plasmonic circuitry elements.

8.
Opt Express ; 25(12): 13125-13144, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28788849

RESUMEN

We present a rigorous investigation of resonant coupling between microspheres based on multipole expansions. The microspheres have diameters in the range of several micrometers and can be used to realize various photonic molecule configurations. We reveal and quantify the interactions between the whispering gallery modes inside individual microspheres and the propagation modes of the entire photonic molecule structures. We show that Fano-like resonances in photonic molecules can be engineered by tuning the coupling between the resonant and radiative modes when the structures are illuminated with simple dipole radiation.

9.
Opt Express ; 23(9): 12337-53, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25969319

RESUMEN

Microsphere-based microscopy systems have garnered lots of recent interest, mainly due to their capacity in focusing light and imaging beyond the diffraction limit. In this paper, we present theoretical foundations for studying the optical performance of such systems by developing a complete theoretical model encompassing the aspects of illumination, sample interaction and imaging/collection. Using this model, we show that surface waves play a significant role in focusing and imaging with the microsphere. We also show that by designing a radially polarized convergent beam, we can focus to a spot smaller than the diffraction limit. By exploiting surface waves, we are able to resolve two dipoles spaced 98 nm apart in simulation using light at a wavelength of 402.292 nm. Using our model, we also explore the effect of beam geometry and polarization on optical resolution and focal spot size, showing that both geometry and polarization greatly affect the shape of the spot.

10.
Opt Express ; 22(8): 8949-61, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24787784

RESUMEN

This paper presents and compares two basis systems, spherical harmonics and plane waves, for studying diverging and converging beams in an optical system. We show a similarity between a converging field and the time reversed field of a radiation field. We present and analyze the differences between the Debye-Wolf diffraction integral and the multipole theory for focusing of polarized light. The Debye-Wolf diffraction integral gives a well-known anomalous behavior on the optical axis and at the edge of the focused beam that can be avoided by using the multipole theory.

11.
J Opt Soc Am A Opt Image Sci Vis ; 30(7): 1426-40, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24323160

RESUMEN

High-aperture focusing through a spherical interface has been employed in optical data storage, photolithography, and especially microscopy. This paper first forms an approximate model, based on geometrical optics and Fourier optics, for evaluating focal fields of the focusing systems. This approximate model helps to clarify some doubts existing in literature. We then propose a rigorous model that is applicable to more general systems. Our model is based on multipole theory, which expands the electromagnetic fields into spherical harmonics.

12.
J Opt Soc Am A Opt Image Sci Vis ; 29(1): 32-43, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22218349

RESUMEN

A multipole expansion, based on spherical harmonics, provides an efficient method for calculating the field in the focal region of a lens for radially polarized illumination, or other illumination polarization and phase distributions, including vortex beams. The multipole approach also has the benefit of providing a simple measure of the purity of the longitudinal field mode. The method is also convenient for calculation of fields scattered by particles and calculation of optical trapping forces.


Asunto(s)
Luz , Modelos Teóricos , Fenómenos Ópticos , Electricidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA