Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Physiol ; 600(1): 61-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34761815

RESUMEN

Understanding communication signals, especially in noisy environments, is crucial to social interactions. Yet, as we age, acoustic signals can be disrupted by cochlear damage and the subsequent auditory nerve fibre degeneration. The most vulnerable medium- and high-threshold-auditory nerve fibres innervate various cell types in the cochlear nucleus, among which the small cells are unique in receiving this input exclusively. Furthermore, small cells project to medial olivocochlear (MOC) neurons, which in turn send branched collaterals back into the small cell cap. Here, we use single-unit recordings to characterise small cell firing characteristics and demonstrate superior intensity coding in this cell class. We show converse effects when activating/blocking the MOC system, demonstrating that small-cell unique coding properties are facilitated by direct cholinergic input from the MOC system. Small cells also maintain tone-level coding in the presence of background noise. Finally, small cells precisely code low-frequency modulation more accurately than other ventral cochlear nucleus cell types, demonstrating accurate envelope coding that may be important for vocalisation processing. These results highlight the small cell olivocochlear circuit as a key player in signal processing in noisy environments, which may be selectively degraded in ageing or after noise insult. KEY POINTS: Cochlear nucleus small cells receive input from low/medium spontaneous rate auditory nerve fibres and medial olivocochlear neurons. Electrical stimulation of medial olivocochlear neurons in the ventral nucleus of the trapezoid body and blocking cholinergic input to small cells using atropine demonstrates an excitatory cholinergic input to small cells, which increases responses to suprathreshold sound. Unique inputs to small cells produce superior sound intensity coding. This coding of intensity is preserved in the presence of background noise, an effect exclusive to this cell type in the cochlear nucleus. These results suggest that small cells serve an essential function in the ascending auditory system, which may be relevant to disorders such as hidden hearing loss.


Asunto(s)
Núcleo Coclear , Cuerpo Trapezoide , Estimulación Acústica , Cóclea , Nervio Coclear , Núcleo Olivar
2.
Eur J Neurosci ; 52(9): 4057-4080, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32686192

RESUMEN

Previous work has led to the hypothesis that, during the production of noise-induced tinnitus, higher levels of nitric oxide (NO), in the ventral cochlear nucleus (VCN), increase the gain applied to a reduced input from the cochlea. To test this hypothesis, we noise-exposed 26 guinea pigs, identified evidence of tinnitus in 12 of them and then compared the effects of an iontophoretically applied NO donor or production inhibitor on VCN single unit activity. We confirmed that the mean driven firing rate for the tinnitus and control groups was the same while it had fallen in the non-tinnitus group. By contrast, the mean spontaneous rate had increased for the tinnitus group relative to the control group, while it remained the same for the non-tinnitus group. A greater proportion of units responded to exogenously applied NO in the tinnitus (56%) and non-tinnitus groups (71%) than a control population (24%). In the tinnitus group, endogenous NO facilitated the driven firing rate in 37% (7/19) of neurons and appeared to bring the mean driven rate back up to control levels by a mechanism involving N-methyl-D-aspartic acid (NMDA) receptors. By contrast, in the non-tinnitus group, endogenous NO only facilitated the driven firing rate in 5% (1/22) of neurons and there was no facilitation of driven rate in the control group. The effects of endogenous NO on spontaneous activity were unclear. These results suggest that NO is involved in increasing the gain applied to driven activity, but other factors are also involved in the increase in spontaneous activity.


Asunto(s)
Núcleo Coclear , Pérdida Auditiva Provocada por Ruido , Acúfeno , Animales , Cobayas , Óxido Nítrico , Ruido
3.
Eur J Neurosci ; 51(4): 963-983, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31494975

RESUMEN

The gaseous free radical, nitric oxide (NO) acts as a ubiquitous neuromodulator, contributing to synaptic plasticity in a complex way that can involve either long term potentiation or depression. It is produced by neuronal nitric oxide synthase (nNOS) which is presynaptically expressed and also located postsynaptically in the membrane and cytoplasm of a subpopulation of each major neuronal type in the ventral cochlear nucleus (VCN). We have used iontophoresis in vivo to study the effect of the NOS inhibitor L-NAME (L-NG-Nitroarginine methyl ester) and the NO donors SIN-1 (3-Morpholinosydnonimine hydrochloride) and SNOG (S-Nitrosoglutathione) on VCN units under urethane anaesthesia. Collectively, both donors produced increases and decreases in driven and spontaneous firing rates of some neurones. Inhibition of endogenous NO production with L-NAME evoked a consistent increase in driven firing rates in 18% of units without much effect on spontaneous rate. This reduction of gain produced by endogenous NO was mirrored when studying the effect of L-NAME on NMDA(N-Methyl-D-aspartic acid)-evoked excitation, with 30% of units showing enhanced NMDA-evoked excitation during L-NAME application (reduced NO levels). Approximately 25% of neurones contain nNOS and the NO produced can modulate the firing rate of the main principal cells: medium stellates (choppers), large stellates (onset responses) and bushy cells (primary-like responses). The main endogenous role of NO seems to be to partly suppress driven firing rates associated with NMDA channel activity but there is scope for it to increase neural gain if there were a pathological increase in its production following hearing loss.


Asunto(s)
Núcleo Coclear , Óxido Nítrico , Animales , Inhibidores Enzimáticos/farmacología , Cobayas , NG-Nitroarginina Metil Éster/farmacología , Neuronas , Donantes de Óxido Nítrico
4.
Brain Res ; 1679: 101-108, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29191772

RESUMEN

Animal models of tinnitus are essential for determining the underlying mechanisms and testing pharmacotherapies. However, there is doubt over the validity of current behavioural methods for detecting tinnitus. Here, we applied a stimulus paradigm widely used in a behavioural test (gap-induced inhibition of the acoustic startle reflex GPIAS) whilst recording from the auditory cortex, and showed neural response changes that mirror those found in the behavioural tests. We implanted guinea pigs (GPs) with electrocorticographic (ECoG) arrays and recorded baseline auditory cortical responses to a startling stimulus. When a gap was inserted in otherwise continuous background noise prior to the startling stimulus, there was a clear reduction in the subsequent evoked response (termed gap-induced reductions in evoked potentials; GIREP), suggestive of a neural analogue of the GPIAS test. We then unilaterally exposed guinea pigs to narrowband noise (left ear; 8-10 kHz; 1 h) at one of two different sound levels - either 105 dB SPL or 120 dB SPL - and recorded the same responses seven-to-ten weeks following the noise exposure. Significant deficits in GIREP were observed for all areas of the auditory cortex (AC) in the 120 dB-exposed GPs, but not in the 105 dB-exposed GPs. These deficits could not simply be accounted for by changes in response amplitudes. Furthermore, in the contralateral (right) caudal AC we observed a significant increase in evoked potential amplitudes across narrowband background frequencies in both 105 dB and 120 dB-exposed GPs. Taken in the context of the large body of literature that has used the behavioural test as a demonstration of the presence of tinnitus, these results are suggestive of objective neural correlates of the presence of noise-induced tinnitus and hyperacusis.


Asunto(s)
Corteza Auditiva/fisiopatología , Potenciales Evocados Auditivos/fisiología , Reflejo de Sobresalto/fisiología , Acúfeno/patología , Estimulación Acústica , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Lateralidad Funcional , Cobayas , Masculino , Ruido , Psicoacústica
5.
Front Neurosci ; 8: 378, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25505379

RESUMEN

The role of glycogen in the central nervous system is intimately linked with the glycolytic pathway. Glycogen is synthesized from glucose, the primary substrate for glycolysis, and degraded to glucose-6-phosphate. The metabolic cost of shunting glucose via glycogen exceeds that of simple phosphorylation of glucose to glucose-6-phosphate by hexokinase; thus, there must be a metabolic advantage in utilizing this shunt pathway. The dogmatic view of glycogen as a storage depot persists, based on initial descriptions of glycogen supporting neural function in the face of aglycemia. The variable latency to conduction failure, dependent upon tissue glycogen levels, provided convincing evidence of the role played by glycogen in supporting neural function. Glycogen is located predominantly in astrocytes in the central nervous system, thus for glycogen to benefit neural elements, intercellular metabolic communication must exist in the form of astrocyte to neuron substrate transfer. Experimental evidence supports a model where glycogen is metabolized to lactate in astrocytes, with cellular expression of monocarboxylate transporters and enzymes appropriately located for lactate shuttling between astrocytes and neural elements, where lactate acts as a substrate for oxidative metabolism. Biosensor recordings have demonstrated a significant steady concentration of lactate present on the periphery of both central white matter and peripheral nerve under unstimulated baseline conditions, indicating continuous cellular efflux of lactate to the interstitium. The existence of this lactate pool argues we must reexamine the "on demand" shuttling of lactate between cellular elements, and suggests continuous lactate efflux surplus to immediate neural requirements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA