RESUMEN
This study aims to develop a theoretical model for predicting the permeability of concrete in underground structures using compressive elastic waves. This research is motivated by the necessity of monitoring the permeability of concrete used in critical underground infrastructure, such as tunnels and radioactive waste disposal sites, to ensure their long-term safety. Increased permeability owing to crack generation can lead to groundwater inflow, undermining the structural integrity of these facilities. Traditional methods for permeability monitoring face challenges at depths of 500 m-1 km owing to high temperatures, high pressures, and limited space conditions. To address these issues, Biot's model, which correlates the P-wave characteristics with the properties of porous media, was applied in this study. The P-wave velocity and attenuation were studied according to the permeability of concrete based on Biot's model. Subsequently, concrete specimens were prepared to measure the permeability, P-wave velocity, and attenuation. The permeability results from the experiment were compared with those obtained from the model for validation. The findings indicate that the modified Biot's model can effectively monitor permeability through elastic wave characteristics, offering a non-destructive and reliable method for assessing the condition of concrete structures in underground environments. This approach is expected to enhance the safety of underground infrastructure through accurate permeability monitoring.
RESUMEN
An atomistic understanding of dry-etching processes with reactive molecules is crucial for achieving geometric integrity in highly scaled semiconductor devices. Molecular dynamics (MD) simulations are instrumental, but the lack of reliable force fields hinders the widespread use of MD in etching simulations. In this work, we develop an accurate neural network potential (NNP) for simulating the etching process of amorphous Si3N4 with HF molecules. The surface reactions in diverse local environments are considered by incorporating several types of training sets: baseline structures, reaction-specific data, and general-purpose training sets. Furthermore, the NNP is refined through iterative comparisons with the density functional theory results. Using the trained NNP, we carry out etching simulations, which allow for detailed observation and analysis of key processes such as preferential sputtering, surface modification, etching yield, threshold energy, and the distribution of etching products. Additionally, we develop a simple continuum model, built from the MD simulation results, which effectively reproduces the surface composition obtained with MD simulations. By establishing a computational framework for atomistic etching simulation and scale bridging, this work will pave the way for more accurate and efficient design of etching processes in the semiconductor industry, enhancing device performance and manufacturing precision.
RESUMEN
Ternary metal oxides are crucial components in a wide range of applications and have been extensively cataloged in experimental materials databases. However, there still exist cation combinations with unknown stability and structures of their compounds in oxide forms. In this study, we employ extensive crystal structure prediction methods, accelerated by machine-learned potentials, to investigate these untapped chemical spaces. We examine 181 ternary metal oxide systems, encompassing most cations except for partially filled 3d or f shells, and determine their lowest-energy crystal structures with representative stoichiometry derived from prevalent oxidation states or recommender systems. Consequently, we discover 45 ternary oxide systems containing stable compounds against decomposition into binary or elemental phases, the majority of which incorporate noble metals. Comparisons with other theoretical databases highlight the strengths and limitations of informatics-based material searches. With a relatively modest computational resource requirement, we contend that heuristic-based structure searches, as demonstrated in this study, offer a promising approach for future materials discovery endeavors.
RESUMEN
In this paper, we propose a deterministic secure quantum communication (DSQC) protocol based on the BB84 system. We developed this protocol to include quantum entity authentication in the DSQC procedure. By first performing quantum entity authentication, it was possible to prevent third-party intervention. We demonstrate the security of the proposed protocol against the intercept-and-re-send attack and the entanglement-and-measure attack. Implementation of this protocol was demonstrated for quantum channels of various lengths. Especially, we propose the use of the multiple generation and shuffling method to prevent a loss of message in the experiment.
RESUMEN
Semiconducting inorganic materials with band gaps ranging between 0 and 5 eV constitute major components in electronic, optoelectronic and photovoltaic devices. Since the band gap is a primary material property that affects the device performance, large band-gap databases are useful in selecting optimal materials in each application. While there exist several band-gap databases that are theoretically compiled by density-functional-theory calculations, they suffer from computational limitations such as band-gap underestimation and metastable magnetism. In this data descriptor, we present a computational database of band gaps for 10,481 materials compiled by applying a hybrid functional and considering the stable magnetic ordering. For benchmark materials, the root-mean-square error in reference to experimental data is 0.36 eV, significantly smaller than 0.75-1.05 eV in the existing databases. Furthermore, we identify many small-gap materials that are misclassified as metals in other databases. By providing accurate band gaps, the present database will be useful in screening materials in diverse applications.
RESUMEN
We designed an encoding scheme, using quantum dots (QDs), for single logical qubit information by encoding quantum information onto four-photon decoherence-free states to acquire immunity against collective decoherence. The designed scheme comprised of QDs, confined in single-sided cavities (QD-cavity systems), used for arbitrary quantum information, encoded onto four-photon decoherence-free states (logical qubits). For our scheme, which can generate the four-photon decoherence-free states, and can encode quantum information onto logical qubits, high efficiency and reliable performance of the interaction between the photons and QD-cavity systems is essential. Thus, through our analysis of the performance of QD-cavity systems under vacuum noise and sideband leakage, we demonstrate that the encoding scheme for single logical qubit information could be feasibly implemented.
RESUMEN
Complex geological processes form multiple layers and change pore water chemistry, saturation level, and temperature. Eventually, the strata hinder interpreting electrical resistivity data. There are no studies that theoretically explore the effects of electrode geometries and multiple layered systems on laboratory electrical resistivity measurements. This study formulates a theoretical electrical resistance between half spherical-tipped cylindrical electrodes embedded on two horizontal layers. The electrical resistivity of each layer is considered separately in the general electrical potential equation with different equipotential surface areas. The finite element analysis is conducted to validate the theoretical equation. Further interpretation provides insights into the distribution of electrical current flow under electrical resistivity mismatch for discussion.
RESUMEN
Quantum phase estimation (QPE) is the key procedure in various quantum algorithms. The main aim of the QPE scheme is to estimate the phase of an unknown eigenvalue, corresponding to an eigenstate of an arbitrary unitary operation. The QPE scheme can be applied as a subroutine to design many quantum algorithms. In this paper, we propose the basic structure of a QPE scheme that could be applied in quantum algorithms, with feasibility by utilizing cross-Kerr nonlinearities (controlled-unitary gates) and linearly optical devices. Subsequently, we analyze the efficiency and the performance of the controlled-unitary gate. This gate consists of a controlled-path gate and a merging-path gate via cross-Kerr nonlinearities under the decoherence effect. Also shown in this paper is a method by which to enhance robustness against the decoherence effect to provide a reliable QPE scheme based on controlled-unitary gates.
RESUMEN
We represent an optical scheme using cross-Kerr nonlinearities (XKNLs) and quantum dot (QD) within a single-sided optical cavity (QD-cavity system) to generate three-photon entangled W state containing entanglement against loss of one photon of them. To generate W state (three-photon) with robust entanglement against loss of one photon, we utilize effects of optical nonlinearities in XKNLs (as quantum controlled operations) and QD-cavity system (as a parity operation) with linearly optical devices. In our scheme, the nonlinear (XKNL) gate consists of weak XKNLs, quantum bus beams, and photon-number-resolving measurement to realize controlled-unitary gate between two photons while another nonlinear (QD) gate employs interactions of photons and an electron of QD confined within a single-sided optical cavity for implementation of parity gate. Subsequently, for the efficiency and experimental feasibility of our scheme generating W state, we analyze the immunity of the controlled-unitary gate using XKNLs against decoherence effect and reliable performance of parity gate using QD-cavity system.
RESUMEN
We propose a controlled quantum teleportation scheme to teleport an unknown state based on the interactions between flying photons and quantum dots (QDs) confined within single- and double-sided cavities. In our scheme, users (Alice and Bob) can teleport the unknown state through a secure entanglement channel under the control and distribution of an arbitrator (Trent). For construction of the entanglement channel, Trent utilizes the interactions between two photons and the QD-cavity system, which consists of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, Alice can teleport the unknown state of the electron spin in a QD inside a double-sided cavity to Bob's electron spin in a QD inside a single-sided cavity assisted by the channel information from Trent. Furthermore, our scheme using QD-cavity systems is feasible with high fidelity, and can be experimentally realized with current technologies.
RESUMEN
We design schemes to generate and distribute hybrid entanglement and hyperentanglement correlated with degrees of freedom (polarization and time-bin) via weak cross-Kerr nonlinearities (XKNLs) and linear optical devices (including time-bin encoders). In our scheme, the multi-photon gates (which consist of XKNLs, quantum bus [qubus] beams, and photon-number-resolving [PNR] measurement) with time-bin encoders can generate hyperentanglement or hybrid entanglement. And we can also purify the entangled state (polarization) of two photons using only linear optical devices and time-bin encoders under a noisy (bit-flip) channel. Subsequently, through local operations (using a multi-photon gate via XKNLs) and classical communications, it is possible to generate a four-qubit hybrid entangled state (polarization and time-bin). Finally, we discuss how the multi-photon gate using XKNLs, qubus beams, and PNR measurement can be reliably performed under the decoherence effect.