Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Small ; : e2404722, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161197

RESUMEN

Low-Tf solvents (Tf = freezing point) are considered and employed for low-temperature lithium-ion battery (LIB) electrolytes to keep electrolytes in the liquid phase at low temperatures. Unfortunately, Tf is synchronized with Tb (boiling point) so low Tf brings Tb down and therefore discourages the thermal stability of electrolytes using low-Tf solvents. In this work, 1) the hot wing of LIB-working temperature by employing a high-Tb (inevitably high-Tf) solvent and 2) the cold wing by using a significant Tf depression is secured. Sulfolane is employed as the high-Tf (therefore, high-Tb) and high-Kf (Kf = cryoscopic constant) solvent since its mesomorphic state between solid and liquid. That abnormally and significantly decreases the enthalpy of fusion, and resultantly grants extremely high Kf at 66.4 K m-1. By employing sulfolane with 2 m lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), the liquid-phase temperature window down to <-80 °C for the cold wing and simultaneously guaranteed its flash point at >+150 °C for the hot wing is successfully extended. LIB cells with lithium iron phosphate and lithium metal worked in a good stand with 2 m LiTFSI/sulfolane at room temperature, -30 °C as an ambient cold, -74 °C as a deep cold, and +80 °C as a deep hot.

2.
Life (Basel) ; 13(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37895343

RESUMEN

This study aims to activate the external urethral sphincter (EUS), which plays a critical role in micturition control, through optogenetics and to determine its potential contribution to the stabilization of sensitized micturition activity. The viral vector (AAV2/8-CMV-hChR2(H134R)-EGFP) is utilized to introduce light-gated ion channels (hChR2/H134R) into the EUS of wild-type C57BL/6 mice. Following the induction of sensitized micturition activity using weak acetic acid (0.1%) in anesthetized mice, optical stimulation of the EUS muscle tissue expressing channel rhodopsin is performed using a 473 nm laser light delivered through optical fibers, and the resulting changes in muscle activation and micturition activity are examined. Through EMG (electromyography) measurements, it is confirmed that optical stimulation electrically activates the EUS muscle in mice. Analysis of micturition activity using cystometry reveals a 70.58% decrease in the micturition period and a 70.27% decrease in the voiding volume due to sensitized voiding. However, with optical stimulation, the micturition period recovers to 101.49%, and the voiding volume recovered to 100.22%. Stimulation of the EUS using optogenetics can alleviate sensitized micturition activity and holds potential for application in conjunction with other micturition control methods.

3.
Small ; 18(29): e2202153, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35754305

RESUMEN

Development of a reliable doping method for 2D materials is a key issue to adopt the materials in the future microelectronic circuits and to replace the silicon, keeping the Moore's law toward the sub-10 nm channel length. Especially hole doping is highly required, because most of the transition metal dichalcogenides (TMDC) among the 2D materials are electron-doped by sulfur vacancies in their atomic structures. Here, hole doping of a TMDC, tungsten disulfide (WS2 ) using the silicon substrate as the dopant medium is demonstrated. An ultralow-power current sourcing transistor or a gated WS2 pn diode is fabricated based on a charge plasma pn heterojunction formed between the WS2 thin-film and heavily doped bulk silicon. An ultralow switchable output current down to 0.01 nA µm-1 , an off-state current of ≈1 × 10-14 A µm-1 , a static power consumption range of 1 fW µm-1 -1 pW µm-1 , and an output current ratio of 103 at 0.1 V supply voltage are achieved. The charge plasma heterojunction allows a stable (less than 3% variation) output current regardless of the gate voltage once it is turned on.

4.
Materials (Basel) ; 15(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35207948

RESUMEN

We compared thermal stability, open-circuit voltage, short-circuit current, and fill factor values of single-crystal Cadmium telluride (CdTe) grown using the vertical Bridgman (VB) technique and doped with group V elements (phosphorus and arsenic), and group Ⅰ element (sodium), followed by an annealing process. The sodium-doped CdTe maintained a hole density of 1016 cm-3 or higher; after annealing for a long time, this decreased to 1015 cm-3 or less. The arsenic-doped CdTe maintained a hole density of approximately 1016 cm-3 even after the annealing process; however its bulk minority carrier lifetime decreased by approximately 10%. The phosphorus-doped CdTe maintained its properties after the annealing process, ultimately achieving a hole density of ~1016 cm-3 and a minority carrier lifetime of ~40 ns. The characteristics of a single-crystal solar cell were evaluated using a solar cell device that contained single-crystal CdTe with various dopants. The sodium-doped sample exhibited poor interfacial properties, and its performance decreased rapidly during annealing. The samples doped with group V elements exhibited stable characteristics even during long-term annealing. We concluded, therefore, that group V elements dopants are more suitable for CdTe single-crystal-based solar cell applications involving thermal stress conditions, such as space missions or extreme fabrication temperature environments.

5.
Opt Express ; 27(15): 22017-22024, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510265

RESUMEN

Metal nanoparticles (NPs) are incorporated in solar cells during the formation of front or back contacts to improve light absorption via the scattering of excitation light at their surface plasmon resonance (SPR) or localized SPR (LSPR). Here, we demonstrate LSPR-promoted improvement in the efficiency of CdS/CdTe solar cells fabricated by physical vapor deposition by incorporating different quantities of chemically synthesized 200-nm Au NPs in the CdTe layer. The J-V characteristics, external quantum efficiencies, absorption spectra, and cell efficiencies of these devices are compared. This study can guide future research on enhancing the CdS/CdTe solar cell performance using the plasmon effect.

6.
Biomed Opt Express ; 9(6): 2699-2715, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30258684

RESUMEN

We present a new fiber-bundle-based endomicroscopy system to measure the fast cerebral blood flow (CBF) velocity in blood vessels located between the surface and the deep brain of living animals. The CBF velocity is obtained by measuring the displacement of the partially overlapped red blood cell images directly, using double-pulse 532-nm laser illumination. The proposed method could measure CBF in blood vessels with diameters ranging from 4 µm to 42 µm and could measure CBF velocities up to 3.2 µm/ms for different vessel diameters at a depth of 2.1 mm from the brain surface in a living mouse.

7.
Sci Rep ; 8(1): 11558, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30069013

RESUMEN

We experimentally investigated the transport properties near metal electrodes installed on a conducting channel in a LaAlO3/SrTiO3 interface. The local region around the Ti and Al electrodes has a higher electrical conductance than that of other regions, where the upper limits of the temperature and magnetic field can be well defined. Beyond these limits, the conductance abruptly decreases, as in the case of a superconductor. The samples with the Ti- or Al-electrode have an upper-limit temperature of approximately 4 K, which is 10 times higher than the conventional superconducting critical temperature of LaAlO3/SrTiO3 interfaces and delta-doped SrTiO3. This phenomenon is explained by the mechanism of electron transfer between the metal electrodes and electronic d-orbitals in the LaAlO3/SrTiO3 interface. The transferred electrons trigger a phase transition to a superconductor-like state. Our results contribute to the deep understanding of the superconductivity in the LaAlO3/SrTiO3 interface and will be helpful for the development of high-temperature interface superconductors.

8.
Biomed Opt Express ; 8(6): 2781-2795, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28663906

RESUMEN

We report a fiber optics-based intravital fluorescence imaging platform that includes epi-fluorescence microscopy and laser patterned-light stimulation system. The platform can perform real-time fluorescence imaging with a lateral resolution of ~4.9 µm while directly inserted into the intact mouse brain, optically stimulate vasoconstriction during real-time imaging, and avoid vessel damage in the penetration path of imaging probe. Using 473-nm patterned-light stimulation, we successfully modulated the vasoconstriction of a single targeted 37-µm-diameter blood vessel located more than 4.7 mm below the brain surface of a live SM22-ChR2 mouse. This platform may permit the hemodynamic studies associated with deeper brain neurovascular disorders.

9.
J Nanosci Nanotechnol ; 15(11): 8632-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26726565

RESUMEN

The LaAlO3/SrTiO3 (LAO/STO) heterostructure has an inherent space inversion asymmetry causing an internal electric field near the interface. The Rashba spin-orbit coupling arising from this structural characteristic has a considerable influence on spin transport. With application of an external magnetic field, we observed conductance change in the LAO/STO interface which depends on the sign and magnitude of the field. Our systematic study revealed that these results come from spin dependent transport, by which we obtained quantitative strength of the Rashba effect. The Rashba strength in this system depends on the temperature: it varies from 2.6 x 10(-12) eVm to negligible value in the temperature range of 1.8 K-12 K. This method for detecting Rashba effect covers a wider temperature range in comparison with those obtained from Shubnikov-de Haas oscillation or weak antilocalization measurements.

10.
Nature ; 494(7435): 72-6, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23364687

RESUMEN

Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA