Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Sens ; 9(8): 3947-3957, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39046188

RESUMEN

In recent years, flexible and stretchable strain sensors have emerged as a prominent area of research, primarily due to their remarkable stretchability and extremely low strain detection threshold. Nevertheless, the advancement of sensors is currently constrained by issues such as complexity, high costs, and limited durability. To tackle the aforementioned issues, this study introduces a lepidophyte-inspired flexible, stretchable strain sensor (LIFSSS). The stretchable bioelectronics composites were composed of multiwalled carbon nanotubes, graphene, neodymium iron boron, and polydimethylsiloxane. Unique biolepidophyted microstructures and magnetic conductive nanocomposites interact with each other through synergistic interactions, resulting in the effective detection of tensile strain and magnetic excitation. The LIFSSS exhibits a 170% tensile range, a linearity of 0.99 in 50-170% strain (0.96 for full-scale range), and a fine durability of 7000 cycles at 110% tensile range. The sensor accurately detects variations in linear tensile force, human movement, and microexpressions. Moreover, LIFSSS demonstrates enhanced efficacy in sign language recognition for individuals with hearing impairments and magnetic grasping for robotic manipulators. Hence, the LIFSSS proposed in this study shows potential applications in various fields, including bioelectronics, electronic skin, and physiological activity monitoring.


Asunto(s)
Dimetilpolisiloxanos , Grafito , Nanocompuestos , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Nanocompuestos/química , Nanotubos de Carbono/química , Humanos , Dimetilpolisiloxanos/química , Grafito/química , Neodimio/química , Resistencia a la Tracción , Técnicas Biosensibles/métodos , Fenómenos Biomecánicos
2.
ACS Appl Mater Interfaces ; 16(25): 32702-32712, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870327

RESUMEN

Herein, we report a dual-functional flexible sensor (DFFS) using a magnetic conductive polymer composed of nickel (Ni), carbon black (CB), and polydimethylsiloxane (PDMS). The material selection for the DFFS utilizes the excellent elasticity of the PDMS matrix and the synergistic interaction between Ni and CB. The DFFS has a wide strain range of 0-170%, a high sensitivity of 74.13 (140-170%), and a low detection limit of 0.3% strain. The DFFS based on superior performance can accurately detect microstrain/microvibration, oncoming/contacting objects, and bicycle riding speed. Additionally, the DFFS can be used for comprehensive monitoring of human movements. Therefore, the DFFS of this work shows significant value for implementation in intelligent wearable devices and noncontact intelligent control.


Asunto(s)
Dimetilpolisiloxanos , Microesferas , Níquel , Hollín , Dispositivos Electrónicos Vestibles , Dimetilpolisiloxanos/química , Humanos , Níquel/química , Hollín/química , Movimiento , Conductividad Eléctrica
3.
J Colloid Interface Sci ; 660: 203-214, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244489

RESUMEN

Recently, wearable electronic products and gadgets have developed quickly with the aim of catching up to or perhaps surpassing the ability of human skin to perceive information from the external world, such as pressure and strain. In this study, by first treating the cellulosic fiber (modal textile) substrate with (3-aminopropyl) triethoxysilane (APTES) and then covering it with conductive nanocomposites, a bionic corpuscle layer is produced. The sandwich structure of tactile corpuscle-inspired bionic (TCB) piezoresistive sensors created with the layer-by-layer (LBL) technology consists of a pressure-sensitive module (a bionic corpuscle), interdigital electrodes (a bionic sensory nerve), and a PU membrane (a bionic epidermis). The synergistic mechanism of hydrogen bond and coupling agent helps to improve the adhesive properties of conductive materials, and thus improve the pressure sensitive properties. The TCB sensor possesses favorable sensitivity (1.0005 kPa-1), a wide linear sensing range (1700 kPa), and a rapid response time (40 ms). The sensor is expected to be applied in a wide range of possible applications including human movement tracking, wearable detection system, and textile electronics.


Asunto(s)
Nanocompuestos , Silanos , Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Nanocompuestos/química , Textiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA