Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Public Health ; 12: 1328089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444441

RESUMEN

Background: Ultraviolet B (UVB) from sunlight represents a major environmental factor that causes toxic effects resulting in structural and functional cutaneous abnormalities in most living organisms. Although numerous studies have indicated the biological mechanisms linking UVB exposure and cutaneous manifestations, they have typically originated from a single study performed under limited conditions. Methods: We accessed all publicly accessible expression data of various skin cell types exposed to UVB, including skin biopsies, keratinocytes, and fibroblasts. We performed biological network analysis to identify the molecular mechanisms and identify genetic biomarkers. Results: We interpreted the inflammatory response and carcinogenesis as major UVB-induced signaling alternations and identified three candidate biomarkers (IL1B, CCL2, and LIF). Moreover, we confirmed that these three biomarkers contribute to the survival probability of patients with cutaneous melanoma, the most aggressive and lethal form of skin cancer. Conclusion: Our findings will aid the understanding of UVB-induced cutaneous toxicity and the accompanying molecular mechanisms. In addition, the three candidate biomarkers that change molecular signals due to UVB exposure of skin might be related to the survival rate of patients with cutaneous melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Secuencia de Bases , Biomarcadores , ARN
2.
Biomed Mater ; 19(2)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38324888

RESUMEN

In vitrohair follicle (HF) models are currently limited toex vivoHF organ cultures (HFOCs) or 2D models that are of low availability and do not reproduce the architecture or behavior of the hair, leading to poor screening systems. To resolve this issue, we developed a technology for the construction of a humanin vitrohair construct based on the assemblage of different types of cells present in the hair organ. First, we demonstrated that epithelial cells, when isolatedin vitro, have similar genetic signatures regardless of their dissection site, and their trichogenic potential is dependent on the culture conditions. Then, using cell aggregation techniques, 3D spheres of dermal papilla (DP) were constructed, and subsequently, epithelial cells were added, enabling the production and organization of keratins in hair, similar to what is seenin vivo. These reconstructed tissues resulted in the following hair compartments: K71 (inner root-sheath), K85 (matrix region), K75 (companion layer), and vimentin (DP). Furthermore, the new hair model was able to elongate similarly toex vivoHFOC, resulting in a shaft-like shape several hundred micrometers in length. As expected, when the model was exposed to hair growth enhancers, such as ginseng extract, or inhibitors, such as TGF-B-1, significant effects similar to thosein vivowere observed. Moreover, when transplanted into skin biopsies, the new constructs showed signs of integration and hair bud generation. Owing to its simplicity and scalability, this model fully enables high throughput screening of molecules, which allows understanding of the mechanism by which new actives treat hair loss, finding optimal concentrations, and determining the synergy and antagonism among different raw materials. Therefore, this model could be a starting point for applying regenerative medicine approaches to treat hair loss.


Asunto(s)
Dermis , Folículo Piloso , Humanos , Células Cultivadas , Organoides , Alopecia
3.
Sci Rep ; 13(1): 22357, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102220

RESUMEN

Solar ultraviolet B (UVB) radiation triggers excessive inflammation, disrupting the epidermal barrier, and can eventually cause skin cancer. A previous study reported that under UVB irradiation, epidermal keratinocytes synthesize the proopiomelanocortin-derived peptide ß-endorphin, which is known for its analgesic effect. However, little is known about the role of ß-endorphin in UVB-exposed skin. Therefore, in this study, we aimed to explore the protective role of ß-endorphin against UVB irradiation-induced damage to the skin barrier in normal human keratinocytes (NHKs) and on a human skin equivalent model. Treatment with ß-endorphin reduced inflammatory responses in UVB-irradiated NHKs by inactivating the NF-κB signaling pathway. Additionally, we found that ß-endorphin treatment reversed UVB-induced abnormal epidermal proliferation and differentiation in NHKs and, thus, repaired the skin barrier in UVB-treated skin equivalents. The observed effects of ß-endorphin on UVB-irradiated NHKs were mediated via blockade of the Akt/mTOR signaling pathway. These results reveal that ß-endorphin might be useful against UVB-induced skin injury, including the disruption of the skin barrier function.


Asunto(s)
Epidermis , betaendorfina , Humanos , betaendorfina/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo , Transducción de Señal , Inflamación/prevención & control , Inflamación/metabolismo , Rayos Ultravioleta/efectos adversos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
4.
Microb Biotechnol ; 16(2): 418-431, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36285915

RESUMEN

Bioactive peptides (BPs) are protein fragments that benefit human health. To assess whether leftover green tea residues (GTRs) can serve as a resource for new BPs, we performed in silico proteolysis of GTRs using the BIOPEP database, revealing a wide range of BPs embedded in GTRs. Comparative genomics and the percentage of conserved protein analyses enabled us to select a few probiotic strains for GTR hydrolysis. The selected probiotics digested GTRs anaerobically to yield GTR-derived peptide fractions. To examine whether green tea (GT) peptide fractions could be potential mediators of host-microbe interactions, we comprehensively screened agonistic and antagonistic activities of 168 human G protein-coupled receptors (GPCRs). NanoLC-MS/MS analysis and thin-layer chromatography allowed the identification of peptide sequences and the composition of glycan moieties in the GTRs. Remarkably, GT peptide fractions produced by Lactiplantibacillus plantarum APsulloc 331261, a strain isolated from GT, showed a potent-binding activity for P2RY6, a GPCR involved in intestinal homeostasis. Therefore, this study suggests the potential use of probiotics-aided GTR hydrolysates as postbiotic BPs, providing a biological process for recycling GTRs from agro-waste into renewable resources as health-promoting BPs.


Asunto(s)
Probióticos , Espectrometría de Masas en Tándem , Humanos , , Anaerobiosis , Péptidos , Probióticos/análisis , Hidrolasas/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232834

RESUMEN

Particulate matter 2.5 (PM2.5), an atmospheric pollutant with an aerodynamic diameter of <2.5 µm, can cause serious human health problems, including skin damage. Since sebocytes are involved in the regulation of skin homeostasis, it is necessary to study the effects of PM2.5 on sebocytes. We examined the role of PM2.5 via the identification of differentially expressed genes, functional enrichment and canonical pathway analysis, upstream regulator analysis, and disease and biological function analysis through mRNA sequencing. Xenobiotic and lipid metabolism, inflammation, oxidative stress, and cell barrier damage-related pathways were enriched; additionally, PM2.5 altered steroid hormone biosynthesis and retinol metabolism-related pathways. Consequently, PM2.5 increased lipid synthesis, lipid peroxidation, inflammatory cytokine expression, and oxidative stress and altered the lipid composition and expression of factors that affect cell barriers. Furthermore, PM2.5 altered the activity of sterol regulatory element binding proteins, mitogen-activated protein kinases, transforming growth factor beta-SMAD, and forkhead box O3-mediated pathways. We also suggest that the alterations in retinol and estrogen metabolism by PM2.5 are related to the damage. These results were validated using the HairSkin® model. Thus, our results provide evidence of the harmful effects of PM2.5 on sebocytes as well as new targets for alleviating the skin damage it causes.


Asunto(s)
Contaminantes Ambientales , Material Particulado , Citocinas/genética , Estrógenos , Perfilación de la Expresión Génica , Humanos , Lípidos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Material Particulado/química , Material Particulado/toxicidad , ARN Mensajero , Esteroides , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Factor de Crecimiento Transformador beta/genética , Vitamina A , Xenobióticos
6.
Biomed Pharmacother ; 156: 113864, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252351

RESUMEN

Skin aging is a major risk factor for the dermal diseases, and interventions to attenuate cellular senescence are expected to reduce the risk for age-related diseases involving skin atrophy. However, blocking cell death or extending proliferation causally results in side effects and an increased cancer risk. For identification of a safer approach, we focused on PDK1 inhibition, which could revert cellular senescence and reduce senescence factors in skin in vitro, in a human skin equivalent model and in an exploratory, placebo-controlled, interventional trial. Natural phytochemical kaempferol tetrasaccharides resulted in a significant reduction in cellular senescence, and an increase in collagen fiber was observed in the skin cell and human skin equivalent. Clinical enhancement in skin appearance was noted in multiple participants, and an immunohistochemical study revealed improvement in the histological appearance of skin tissue and extracellular matrix. This change was associated with relative improvement in histological markers of senescence and clinical appearance of the aged skin and an increase in collagen fiber, an essential factor for preventing skin atrophy and consistency of the basement membrane. These results indicate that PDK1 inhibition is a potentially effective antiaging intervention, suggesting a diagnostic role and preventive actions of PDK1 in senescence-associated skin atrophy.


Asunto(s)
Fibroblastos , Quempferoles , Humanos , Anciano , Quempferoles/farmacología , Quempferoles/uso terapéutico , Piel , Senescencia Celular , Colágeno/metabolismo , Atrofia/tratamiento farmacológico , Atrofia/metabolismo
7.
J Ginseng Res ; 46(4): 536-542, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35818428

RESUMEN

Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0-200 µg/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 µg/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.

8.
J Food Sci Technol ; 59(4): 1317-1325, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35250057

RESUMEN

The purpose of the current study was to examine the effect of adding secondary ingredients such as green tea derived water-soluble polysaccharides (GTP) and flavonol aglycone rich fractions derived from cellulase treated green tea extract (FVN) into catechin rich green tea extracts (GTE) on wheat starch digestion and intestinal glucose transport using in vitro digestion with Caco-2 cells. Co-digestion of wheat starch with GTE (16.88 g L-1) or GTE + GTP + FVN (16.69 g L-1) appeared to promote starch hydrolysis compared to control (15.49 g L-1). In case of major flavonoids, addition of epigallocatechin gallate (EGCG), EGCG + myricetin (M) into wheat starch significantly increased the digestion of starch into glucose. Glucose transport rate decreased by 22.35% in wheat starch + GTE + GTP + FVN (1.39%), while the least amount of glucose (1.70%) was transported in EGCG mixed with M (1% of EGCG) as secondary ingredients among individual flavonoids formulation. It indicated that inhibitory effect on glucose transport was higher in addition of GTE, GTP, and FVN as excipients ingredients rather than targeted major flavonoids. Results from the current study suggest that whole green tea including flavonoid rich fractions could enhance hypoglycemic potential of GTE. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05140-2.

9.
J Agric Food Chem ; 69(50): 15208-15217, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881881

RESUMEN

The purpose of the current study was to investigate the effect of various characterized green tea extracts (GTEs) according to extraction methods on enzymatic starch hydrolysis and intestinal glucose transport. Codigestion of wheat starch with water extract (WGT) or ethanol extract formulated with green tea polysaccharides and flavonols (CATEPLUS) produced 3.4-3.5 times higher resistant starch (RS) than wheat starch only. Its microstructures were changed to spherical shapes and smooth surfaces as shown by scanning electron microscopy (SEM) results. According to Fourier transform infrared (FT-IR) spectra, the absorption peak of O-H stretching was red-shifted in WGT or CATEPLUS. The results confirmed that hydrogen bonds were formed between starch granules and polysaccharides in WGT or CATEPLUS. Intestinal glucose transport subsequently measured after in vitro digestion was mostly suppressed in CATEPLUS. Gene expression of the glucose transporter protein, particularly SGLT1, was significantly inhibited by addition of CATEPLUS (p < 0.05). Results from the current study suggest that co-intake of green tea extracts formulated with green tea polysaccharides and flavonols could be a potentially useful means to delay blood glucose absorption when consuming starchy foods.


Asunto(s)
Almidón , , Glucosa , Hidrólisis , Extractos Vegetales , Espectroscopía Infrarroja por Transformada de Fourier
10.
Metabolites ; 11(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34940642

RESUMEN

Soybean (Glycine max; SB) leaf (SL) is an abundant non-conventional edible resource that possesses value-adding bioactive compounds. We predicted the attributes of SB based on the metabolomes of an SL using targeted metabolomics. The SB was planted in two cities, and SLs were regularly obtained from the SB plant. Nine flavonol glycosides were purified from SLs, and a validated simultaneous quantification method was used to establish rapid separation by ultrahigh-performance liquid chromatography-mass detection. Changes in 31 targeted compounds were monitored, and the compounds were discriminated by various supervised machine learning (ML) models. Isoflavones, quercetin derivatives, and flavonol derivatives were discriminators for cultivation days, varieties, and cultivation sites, respectively, using the combined criteria of supervised ML models. The neural model exhibited higher prediction power of the factors with high fitness and low misclassification rates while other models showed lower. We propose that a set of phytochemicals of SL is a useful predictor for discriminating characteristics of edible plants.

11.
Molecules ; 26(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34771068

RESUMEN

Caragana rosea Turcz, which belongs to the Leguminosae family, is a small shrub found in Northern and Eastern China that is known to possess anti-inflammatory properties and is used to treat fever, asthma, and cough. However, the underlying molecular mechanisms of its anti-inflammatory effects are unknown. Therefore, we used lipopolysaccharide (LPS) in RAW264.7 macrophages to investigate the molecular mechanisms that underlie the anti-inflammatory activities of a methanol extract of Caragana rosea (Cr-ME). We showed that Cr-ME reduced the production of nitric oxide (NO) and mRNA levels of iNOS, TNF-α, and IL-6 in a concentration-dependent manner. We also found that Cr-ME blocked MyD88- and TBK1-induced NF-κB and IRF3 promoter activity, suggesting that it affects multiple targets. Moreover, Cr-ME reduced the phosphorylation levels of IκBα, IKKα/ß and IRF3 in a time-dependent manner and regulated the upstream NF-κB proteins Syk and Src, and the IRF3 protein TBK1. Upon overexpression of Src and TBK1, Cr-ME stimulation attenuated the phosphorylation of the NF-κB subunits p50 and p65 and IRF3 signaling. Together, our results suggest that the anti-inflammatory activity of Cr-ME occurs by inhibiting the NF-κB and IRF3 signaling pathways.


Asunto(s)
Antiinflamatorios/farmacología , Caragana/química , Inflamación/tratamiento farmacológico , Metanol/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Células Cultivadas , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Factor 3 Regulador del Interferón/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Ratones , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo
12.
Plants (Basel) ; 10(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34834697

RESUMEN

There is a growing need to develop anti-inflammatory drugs to regulate inflammatory responses. An extract of Huberia peruviana Cogn. had the best inhibitory effect on nitric oxide (NO) production in screening process undertaken in our laboratory. However, the anti-inflammatory effect of Huberia peruviana Cogn. methanol extract (Hp-ME) has not been studied. In this study, the anti-inflammatory effect of Hp-ME was assessed by using an NO assay, RT-PCR, luciferase reporter gene activity assay, western blotting assay, HCl/EtOH-induced acute gastritis model, and LPS-induced acute lung injury model. The phytochemical components of Hp-ME were determined through LC-MS/MS analysis. When RAW264.7 and HEK293T cells were treated with Hp-ME, NO production was decreased dose-dependently without cytotoxicity and the mRNA levels of iNOS, COX-2, and TNF-α were decreased. In a luciferase assay, the activity of transcription factors, NF-κB in TRIF or MyD88-overexpressing HEK293T cells was extremely reduced by Hp-ME. The western blotting analysis indicated that Hp-ME has anti-inflammatory effects by inhibiting the phosphorylation of Src. Hp-ME showed anti-inflammatory effects on in vivo models of HCl/EtOH-induced gastritis and LPS-induced acute lung injury. LC-MS/MS revealed that Hp-ME contains several anti-inflammatory flavonoids. The final findings of this study imply that Hp-ME could be used as an anti-inflammatory drug in several inflammatory diseases.

13.
J Agric Food Chem ; 69(47): 14075-14085, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784711

RESUMEN

The purpose of the current study was to investigate the effect of green tea ethanol extract (GTE) and polysaccharide fractions from green tea (PFGs) on the hydrolysis of wheat starch, microstructural changes, and intestinal transport of glucose. The amount of resistant starch (RS) was significantly lowered in the water-soluble polysaccharide (WSP), water-soluble polysaccharide-pectinase (WSP-P), and water-insoluble polysaccharide-alkali soluble (WISP-Alk-Soluble; p < 0.05). The microstructures of gelatinized wheat starch granules with WSP, WSP-P, and WISP-Alk-Soluble were spherical with small cracks. The amount of intestinal transported glucose from digested wheat starch was 2.12-3.50 times lower than the control group. The results from the current study suggest that water- and alkali-soluble PFGs could be potential ingredients to lower starch hydrolysis as well as to control the postprandial blood glucose level when foods that contain starch are consumed.


Asunto(s)
Almidón , , Glucosa , Hidrólisis , Polisacáridos , Triticum
14.
Phytomedicine ; 93: 153778, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34628239

RESUMEN

BACKGROUND: Cocculus hirsutus (L.) W. Thedo., a traditionally well-known plant, has confirmed antitumor properties as well as acute and chronic diuretic effects. However, little is known about its inflammatory activities and the potential effect on inflammatory disease treatment. PURPOSE: Our aim in this study was to explore additional beneficial properties of C. hirsutus ethanol extract (Ch-EE) such as anti-inflammatory activity in vitro and in vivo as well as its underlying mechanisms and to provide a theoretical basis for its role as a candidate natural drug in clinical gastritis and lung disease therapy. STUDY DESIGN: RAW264.7 cells, HEK293T cells, peritoneal macrophages, and mouse models of acute gastritis and acute lung injury were used to assess the anti-inflammatory activity of Ch-EE. METHODS: Decreases in LPS-induced nitric oxide (NO) production and cytokine expression by RAW264.7 cells after Ch-EE treatment were evaluated by Griess assays and PCR, respectively. Transcription factor activity was assessed through luciferase reporter gene assay, and protein expression was determined by Western blotting analysis. Overexpression assays and cellular thermal shift assays were executed in HEK293T cells. Our two in vivo models were an HCl/EtOH-induced gastritis model and an LPS-induced lung injury model. Changes in stomach lesions, lung edema, and lung histology were examined upon treatment with Ch-EE. Components of Ch-EE were determined by liquid chromatography-mass spectrometry. RESULTS: LPS-induced nitric oxide production and Pam3CSK4- and L-NAME-induced NO production were inhibited by Ch-EE treatment of RAW264.7 cells. Furthermore, LPS-induced increases in transcript levels of iNOS, COX2, CCL12, and IL-1ß were reduced by Ch-EE treatment. Ch-EE decreased both MyD88- and TRIF-induced NF-κB promotor activity. Proteins upstream of NF-κB, namely p-p50, p-p65, p-IκBα, p-AKT1, p-Src, and p-Syk, were all downregulated by Ch-EE. Moreover, Src and Syk were targets of Ch-EE. Ch-EE treatment reduced the size of inflammatory stomach lesions induced by HCl/EtOH, lung edema, and accumulation of activated neutrophils caused by LPS. CONCLUSIONS: These results strongly suggest that Cocculus hirsutus can be developed as a promising anti-inflammatory remedy with Src- and Syk-inhibitory functions targeting diseases related to gastritis and lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Cocculus , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Células HEK293 , Humanos , Lipopolisacáridos , Ratones , Ratones Endogámicos ICR , FN-kappa B , Óxido Nítrico , Extractos Vegetales/farmacología , Células RAW 264.7 , Estómago , Quinasa Syk , Familia-src Quinasas
15.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641616

RESUMEN

Several Cissus species have been used and reported to possess medicinal benefits. However, the anti-inflammatory mechanisms of Cissus subtetragona have not been described. In this study, we examined the potential anti-inflammatory effects of C. subtetragona ethanol extract (Cs-EE) in vitro and in vivo, and investigated its molecular mechanism as well as its flavonoid content. Lipopolysaccharide (LPS)-induced macrophage-like RAW264.7 cells and primary macrophages as well as LPS-induced acute lung injury (ALI) and HCl/EtOH-induced acute gastritis mouse models were utilized. Luciferase assays, immunoblotting analyses, overexpression strategies, and cellular thermal shift assay (CETSA) were performed to identify the molecular mechanisms and targets of Cs-EE. Cs-EE concentration-dependently reduced the secretion of NO and PGE2, inhibited the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells, and decreased NF-κB- and AP-1-luciferase activity. Subsequently, we determined that Cs-EE decreased the phosphorylation events of NF-κB and AP-1 pathways. Cs-EE treatment also significantly ameliorated the inflammatory symptoms of HCl/EtOH-induced acute gastritis and LPS-induced ALI mouse models. Overexpression of HA-Src and HA-TAK1 along with CETSA experiments validated that inhibited inflammatory responses are the outcome of attenuation of Src and TAK1 activation. Taken together, these findings suggest that Cs-EE could be utilized as an anti-inflammatory remedy especially targeting against gastritis and acute lung injury by attenuating the activities of Src and TAK1.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/administración & dosificación , Cissus/química , Etanol/efectos adversos , Gastritis/tratamiento farmacológico , Ácido Clorhídrico/efectos adversos , Lipopolisacáridos/efectos adversos , Macrófagos/citología , Polifenoles/administración & dosificación , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Administración Oral , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Citocinas/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Gastritis/inducido químicamente , Gastritis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Extractos Vegetales/química , Polifenoles/química , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Familia-src Quinasas/genética
16.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299073

RESUMEN

Theasinensin A (TSA) is a major group of catechin dimers mainly found in oolong tea and black tea. This compound is also manufactured with epigallocatechin gallate (EGCG) as a substrate and is refined after the enzyme reaction. In previous studies, TSA has been reported to be effective against inflammation. However, the effect of these substances on skin melanin formation remains unknown. In this study, we unraveled the role of TSA in melanogenesis using mouse melanoma B16F10 cells and normal human epidermal melanocytes (NHEMs) through reverse transcription polymerase chain reaction (RT-PCR), Western blotting analysis, luciferase reporter assay, and enzyme-linked immunosorbent assay analysis. TSA inhibited melanin formation and secretion in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 cells and NHEMs. TSA down-regulated the mRNA expression of tyrosinase (Tyr), tyrosinase-related protein 1 (Tyrp1), and Tyrp2, which are all related to melanin formation in these cells. TSA was able to suppress the activities of certain proteins in the melanocortin 1 receptor (MC1R) signaling pathway associated with melanin synthesis in B16F10 cells: cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), protein kinase A (PKA), tyrosinase, and microphthalmia-associated transcription factor (MITF). We also confirmed α-MSH-mediated CREB activities through a luciferase reporter assay, and that the quantities of cAMP were reduced by TSA in the enzyme linked immunosorbent assay (ELISA) results. Based on these findings, TSA should be considered an effective inhibitor of hyperpigmentation.


Asunto(s)
Benzopiranos/farmacología , AMP Cíclico/metabolismo , Melaninas/metabolismo , Melanocitos/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Fenoles/farmacología , Animales , Humanos , Melanocitos/citología , Melanocitos/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Fosforilación , Transducción de Señal
17.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069002

RESUMEN

Precise measurement of particulate matter (PM) on skin is important for managing and preventing PM-related skin diseases. This study aims to directly visualize the deposition and penetration of PM into human skin using a multimodal nonlinear optical (MNLO) imaging system. We successfully obtained PM particle signals by merging two different sources, C-C vibrational frequency and autofluorescence, while simultaneously visualizing the anatomical features of the skin via keratin, collagen, and elastin. As a result, we found morphologically dependent PM deposition, as well as increased deposition following disruption of the skin barrier via tape-stripping. Furthermore, PM penetrated more and deeper into the skin with an increase in the number of tape-strippings, causing a significant increase in the secretion of pro-inflammatory cytokines. Our results suggest that MNLO imaging could be a useful technique for visualizing and quantifying the spatial distribution of PM in ex vivo human skin tissues.


Asunto(s)
Imagen Multimodal/métodos , Imagen Óptica/métodos , Material Particulado/análisis , Enfermedades de la Piel/diagnóstico , Piel/metabolismo , Humanos , Enfermedades de la Piel/metabolismo
18.
Molecules ; 26(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802142

RESUMEN

The aim of this study was to profile the bioaccessibility and intestinal absorption of epicatechins and flavonols in different forms of green tea and its formulation: loose leaf tea, powdered tea, 35% catechins containing GTE, and GTE formulated with green tea-derived polysaccharide and flavonols (CATEPLUS™). The bioaccessibillity and intestinal absorption of epicatechins and flavonols was investigated by using an in vitro digestion model system with Caco-2 cells. The bioaccessibility of total epicatechins in loose leaf tea, powdered tea, GTE, and CATEPLUS™ was 1.27%, 2.30%, 22.05%, and 18.72%, respectively, showing that GTE and CATEPLUS™ had significantly higher bioaccessibility than powdered tea and loose leaf tea. None of the flavonols were detected in powdered tea and loose leaf tea, but the bioaccessibility of the total flavonols in GTE and CATEPLUS™ was 85.74% and 66.98%, respectively. The highest intestinal absorption of epicatechins was found in CATEPLUS™ (171.39 ± 5.39 ng/mg protein) followed by GTE (57.38 ± 9.31), powdered tea (3.60 ± 0.67), and loose leaf tea (2.94 ± 1.03). The results from the study suggest that formulating green tea extracts rich in catechins with second components obtained from green tea processing could enhance the bioavailability of epicatechins.


Asunto(s)
Flavonoides/farmacología , Té/metabolismo , Antioxidantes , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Catequina/química , Catequina/metabolismo , Digestión/efectos de los fármacos , Digestión/fisiología , Flavonoides/metabolismo , Flavonoles/química , Flavonoles/metabolismo , Humanos , Intestinos/efectos de los fármacos , Intestinos/fisiología , Modelos Biológicos , Extractos Vegetales
19.
J Ethnopharmacol ; 271: 113887, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33539951

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever. AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages. MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS. RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1ß, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1ß and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin. CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.


Asunto(s)
Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Rutaceae/química , Quinasa Syk/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Ciclooxigenasa 2/genética , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Etanol/toxicidad , Gastritis/inducido químicamente , Gastritis/tratamiento farmacológico , Gastritis/patología , Células HEK293 , Humanos , Ácido Clorhídrico/toxicidad , Inflamación/genética , Interleucina-1beta/genética , Lipopolisacáridos/toxicidad , Masculino , Metanol/química , Ratones , Ratones Endogámicos ICR , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
20.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366052

RESUMEN

The outer epidermal skin is a primary barrier that protects the body from extrinsic factors, such as ultraviolet (UV) radiation, chemicals and pollutants. The complete epithelialization of a wound by keratinocytes is essential for restoring the barrier function of the skin. However, age-related alterations predispose the elderly to impaired wound healing. Therefore, wound-healing efficacy could be also considered as a potent function of an anti-aging reagent. Here, we examine the epidermal wound-healing efficacy of the fourth-generation retinoid, seletinoid G, using HaCaT keratinocytes and skin tissues. We found that seletinoid G promoted the proliferation and migration of keratinocytes in scratch assays and time-lapse imaging. It also increased the gene expression levels of several keratinocyte proliferation-regulating factors. In human skin equivalents, seletinoid G accelerated epidermal wound closure, as assessed using optical coherence tomography (OCT) imaging. Moreover, second harmonic generation (SHG) imaging revealed that seletinoid G recovered the reduced dermal collagen deposition seen in ultraviolet B (UVB)-irradiated human skin equivalents. Taken together, these results indicate that seletinoid G protects the skin barrier by accelerating wound healing in the epidermis and by repairing collagen deficiency in the dermis. Thus, seletinoid G could be a potent anti-aging agent for protecting the skin barrier.


Asunto(s)
Dioxolanos/farmacología , Piranos/farmacología , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Dioxolanos/síntesis química , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/efectos de la radiación , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Piranos/síntesis química , Piel/efectos de los fármacos , Piel/metabolismo , Tomografía de Coherencia Óptica , Rayos Ultravioleta , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA