Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Epigenetics Chromatin ; 16(1): 45, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953264

RESUMEN

BACKGROUND: Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation, DNA modifications in particular, of gene expression between neurons and glia. RESULTS: After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT-whole genome oxidative bisulfite sequencing (WGoxBS) to assess the neuronal translatome and epigenome in the hippocampus of young mice (4 months old). WGoxBS findings were validated with enzymatic methyl-Seq (EM-Seq) and nanopore sequencing. Comparing neuronal data to microglial and astrocytic data from NuTRAP models, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, rather than proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of gene body mCG and a positive relationship between distal promoter and gene body hmCG with gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. CONCLUSIONS: Neurons, astrocytes, and microglia demonstrate different genome-wide levels of mCG, hmCG, and mCH that are reproducible across analytical methods. However, modification-gene expression relationships are conserved across cell types. Enrichment of differential modifications across cell types in gene bodies and distal regulatory elements, but not proximal promoters, highlights epigenomic patterning in these regions as potentially greater determinants of cell identity. These findings also demonstrate the importance of differentiating between mC and hmC in neuroepigenomic analyses, as up to 30% of what is conventionally interpreted as mCG can be hmCG, which often has a different relationship to gene expression than mCG.


Asunto(s)
Astrocitos , Microglía , Ratones , Animales , Metilación de ADN , ADN , Neuronas
2.
ACS Omega ; 8(38): 34206-34214, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37779976

RESUMEN

Antigen receptor (AgR) diversity is central to the ability of adaptive immunity in jawed vertebrates to protect against pathogenic agents. The production of highly diverse AgR repertoires is initiated during B and T cell lymphopoiesis by V(D)J recombination, which assembles the receptor genes from component gene segments in a cut-and-paste recombination reaction. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank AgR gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence, and the molecular mechanism for semiselective V(D)J recombination specificity is unknown. The modulation of chromatin structure during V(D)J recombination is essential in the formation of diverse AgRs in adaptive immunity while also reducing the likelihood for off-target recombination events that can result in chromosomal aberrations and genomic instability. Here we review what is presently known regarding mechanisms that facilitate assembly of RAG1/2 with RSSs, the ensuing conformational changes required for DNA cleavage activity, and how the readout of the RSS sequence affects reaction efficiency.

3.
bioRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38187520

RESUMEN

DNA methylation data has been used to make "epigenetic clocks" which attempt to measure chronological and biological aging. These models rely on data derived from bisulfite-based measurements, which exploit a semi-selective deamination and a genomic reference to determine methylation states. Here, we demonstrate how another hallmark of aging, genomic instability, influences methylation measurements in both bisulfite sequencing and methylation arrays. We found that non-methylation factors lead to "pseudomethylation" signals that are both confounding of epigenetic clocks and uniquely age predictive. Quantifying these covariates in aging studies will be critical to building better clocks and designing appropriate studies of epigenetic aging.

4.
Nucleic Acids Res ; 50(20): 11696-11711, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36370096

RESUMEN

In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions.


Asunto(s)
Señales de Clasificación de Proteína , Recombinación V(D)J , Señales de Clasificación de Proteína/genética , Proteínas de Homeodominio/metabolismo , Receptores de Antígenos/genética , Pirimidinas , Purinas
5.
Immunobiology ; 226(3): 152089, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33873062

RESUMEN

V(D)J recombination by the RAG1 and RAG2 protein complex in developing lymphocytes includes DNA double strand break (DSB) intermediates. RAG2 undergoes export from the nucleus and enrichment at the centrosome minutes following production of DSBs by genotoxic stress, suggesting that RAG2 participates in cellular responses to DSBs such as those generated during V(D)J recombination. To determine the effect of RAG2 expression on cell viability following DSB generation, we measured pre-B cells that expressed either full length (FL) wild-type RAG2, or a T490A mutant of RAG2 that has increased stability and fails to undergo nuclear export following generation of DSBs. Each RAG2 construct was labeled with GFP at the N-terminus. Compared to the T490A mutant, cells expressing FL RAG2 exhibited elevated apoptosis by 24 h following irradiation, and this coincided with a greater amount of Caspase 3 cleavage measured in cell lysates. Pre-B cells expressing either RAG2 protein exhibited similar increases in phospho-p53 levels following irradiation. Interestingly, FL RAG2-expressing cells exhibited elevated division relative to the T490A clone beginning ~24 h following irradiation, as well as an increased percentage of cells proceeding through mitosis, suggesting an improved rate of recovery following the initial burst in apoptosis. Altogether, these data show that FL RAG2, but not its stable nuclear export-defective T490A mutant, participates in pre-B cell decisions between apoptosis versus DNA repair and cell cycle progression following DNA damage.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/genética , Expresión Génica , Proteínas Nucleares/genética , Células Precursoras de Linfocitos B/metabolismo , Ciclo Celular , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Mutación , Proteínas Nucleares/metabolismo , Recombinación V(D)J
6.
PLoS One ; 14(5): e0216137, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31075127

RESUMEN

RAG2 of the V(D)J recombinase is essential for lymphocyte development. Within the RAG2 noncore region is a plant homeodomain (PHD) that interacts with the modified histone H3K4me3, and this interaction is important for relieving inhibition of the RAG recombinase for V(D)J recombination. However, the effect of the noncore region on RAG2 localization and dynamics in cell nuclei is poorly understood. Here, we used cell imaging to measure the effect of mutating the RAG2 noncore region on properties of the full length protein. We measured GFP-labeled full length RAG2 (FL), the RAG2 core region alone (Core), and a T490A mutant in the noncore region, which has unique regulatory properties. This showed that FL, T490A, and Core localized to nuclear domains that were adjacent to DAPI-rich heterochromatin, and that contained the active chromatin marker H3K4me3. Within the RAG2-enriched regions, T490A exhibited greater colocalization with H3K4me3 than either FL or Core. Furthermore, colocalization of H3K4me3 with FL and T490A, but not Core, increased in conditions that increased H3K4me3 levels. Superresolution imaging showed H3K4me3 was distributed as puncta that RAG2 abutted, and mobility measurements showed that T490A had a significantly lower rate of diffusion within the nucleus than either FL or Core proteins. Finally, mutating Trp453 of the T490A mutant (W453A,T490A), which blocks PHD-dependent interactions with H3K4me3, abolished the T490A-mediated increased colocalization with H3K4me3 and slower mobility compared to FL. Altogether, these data show that Thr490 in the noncore region modulates RAG2 localization and dynamics in the pre-B cell nucleus, such as by affecting RAG2 interactions with H3K4me3.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Animales , Línea Celular , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Células HEK293 , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA