Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17182, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060289

RESUMEN

Despite therapeutic advancements, cervical cancer caused by high-risk subtypes of the human papillomavirus (HPV) remains a leading cause of cancer-related deaths among women worldwide. This study aimed to discover potential drug candidates from the Asian medicinal plant Andrographis paniculata, demonstrating efficacy against the E6 protein of high-risk HPV-16 subtype through an in-silico computational approach. The 3D structures of 32 compounds (selected from 42) derived from A. paniculata, exhibiting higher binding affinity, were obtained from the PubChem database. These structures underwent subsequent analysis and screening based on criteria including binding energy, molecular docking, drug likeness and toxicity prediction using computational techniques. Considering the spectrometry, pharmacokinetic properties, docking results, drug likeliness, and toxicological effects, five compounds-stigmasterol, 1H-Indole-3-carboxylic acid, 5-methoxy-, methyl ester (AP7), andrographolide, apigenin and wogonin-were selected as the potential inhibitors against the E6 protein of HPV-16. We also performed 200 ns molecular dynamics simulations of the compounds to analyze their stability and interactions as protein-ligand complexes using imiquimod (CID-57469) as a control. Screened compounds showed favorable characteristics, including stable root mean square deviation values, minimal root mean square fluctuations and consistent radius of gyration values. Intermolecular interactions, such as hydrogen bonds and hydrophobic contacts, were sustained throughout the simulations. The compounds displayed potential affinity, as indicated by negative binding free energy values. Overall, findings of this study suggest that the selected compounds have the potential to act as inhibitors against the E6 protein of HPV-16, offering promising prospects for the treatment and management of CC.


Asunto(s)
Andrographis , Papillomavirus Humano 16 , Simulación del Acoplamiento Molecular , Proteínas Oncogénicas Virales , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/virología , Humanos , Femenino , Proteínas Oncogénicas Virales/metabolismo , Proteínas Oncogénicas Virales/química , Andrographis/química , Papillomavirus Humano 16/efectos de los fármacos , Proteínas Represoras/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Fitoquímicos/farmacología , Fitoquímicos/química , Simulación por Computador , Extractos Vegetales/química , Extractos Vegetales/farmacología , Simulación de Dinámica Molecular , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/virología , Diterpenos/farmacología , Diterpenos/química , Unión Proteica
2.
Sci Rep ; 14(1): 16708, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030251

RESUMEN

Controlling foodborne pathogens in buffalo milk is crucial for ensuring food safety. This study estimated the prevalence of nine target genes representing seven critical foodborne bacteria in milk and milk products, and identified factors associated with their presence in buffalo milk chain nodes in Bangladesh. One hundred and forty-three milk samples from bulk tank milk (n = 34), middlemen (n = 37), milk collection centers (n = 37), and milk product shops (n = 35) were collected and analyzed using RT-PCR. Escherichia (E.) coli, represented through yccT genes, was the most prevalent throughout the milk chain (81-97%). Chi-squared tests were performed to identify the potential risk factors associated with the presence of foodborne bacteria encoded for different genes. At the middleman level, the prevalence of E. coli was associated with the Mymensingh, Noakhali, and Bhola districts (P = 0.01). The prevalence of Listeria monocytogenes, represented through inlA genes, and Yersinia (Y.) enterocolitica, represented through yst genes, were the highest at the farm level (65-79%). The prevalence of both bacteria in bulk milk was associated with the Noakhali and Bhola districts (P < 0.05). The prevalence of Y. enterocolitica in bulk milk was also associated with late autumn and spring (P = 0.01) and was higher in buffalo-cow mixed milk than in pure buffalo milk at the milk collection center level (P < 0.01). The gene stx2 encoding for Shiga toxin-producing (STEC) E. coli was detected in 74% of the milk products. At the middleman level, the prevalence of STEC E. coli was associated with the use of cloths or tissues when drying milk containers (P = 0.01). Salmonella enterica, represented through the presence of invA gene, was most commonly detected (14%) at the milk collection center. The use of plastic milk containers was associated with a higher prevalence of Staphylococcus aureus, represented through htrA genes, at milk product shops (P < 0.05). These results suggest that raw milk consumers in Bangladesh are at risk if they purchase and consume unpasteurized milk.


Asunto(s)
Búfalos , Microbiología de Alimentos , Leche , Búfalos/microbiología , Animales , Leche/microbiología , Bangladesh , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Yersinia enterocolitica/genética , Yersinia enterocolitica/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación
3.
Environ Monit Assess ; 196(8): 729, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001908

RESUMEN

Soil microbiome science, rapidly evolving, predominantly focuses on field crop soils. However, understanding garden soil microbiomes is essential for enhancing food production sustainability in garden environments. This study aimed to unveil the bacteriome diversity and composition in rooftop garden soils (RGS) and surface garden soils (SGS) across urban (Dhaka North and Dhaka South City Corporations) and peri-urban (Gazipur City Corporation) areas of Dhaka Division, Bangladesh. We analyzed 11 samples, including six RGS and five SGS samples from 11 individual gardens using 16S rRNA (V3-V4 region) gene-based amplicon sequencing. A total of 977 operational taxonomic units (OTUs), including 270 and 707 in RGS and SGS samples, respectively, were identified. The observed OTUs were represented by 21 phyla, 45 classes, 84 orders, 173 families, and 293 genera of bacteria. Alpha diversity indices revealed significantly higher bacterial diversity in SGS samples (p = 0.01), while beta diversity analyses indicated distinct bacteriome compositions between RGS and SGS samples (p = 0.028, PERMANOVA). Despite substantial taxonomic variability between sample categories, there was also a considerable presence of shared bacterial taxa. At the phylum level, Bacilliota (61.14%), Pseudomonadota (23.42%), Actinobacteria (6.33%), and Bacteroidota (3.32%) were the predominant bacterial phyla (comprising > 94.0% of the total abundances) in both types of garden soil samples. Of the identified genera, Bacillus (69.73%) and Brevibacillus (18.81%) in RGS and Bacillus (19.22%), Methylophaga (19.21%), Acinetobacter (6.27%), Corynebacterium (5.06%), Burkholderia (4.78%), Paracoccus (3.98%) and Lysobacter (2.07%) in SGS were the major bacterial genera. Importantly, we detected that 52.90% of genera were shared between RGS and SGS soil samples. Our data reveal unique and shared bacteriomes with probiotic potential in soil samples from both rooftop and surface gardens. Further studies should explore the functional roles of shared bacterial taxa in garden soils and how urban environmental factors affect microbiome composition to optimize soil health and sustainable food production.


Asunto(s)
Bacterias , Jardines , Microbiota , ARN Ribosómico 16S , Microbiología del Suelo , Suelo , Bangladesh , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Suelo/química , Monitoreo del Ambiente , Biodiversidad , Ciudades
4.
Microbiol Resour Announc ; : e0025224, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023249

RESUMEN

Pediococcus acidilactici is a potential probiotic bacteria isolated from diverse sources. However, strains isolated from milk, especially from raw milk of healthy cows, have not been thoroughly studied. Here, we report the draft genome sequence of P. acidilactici strains MBBL5 and MBBL7, isolated from milk samples of healthy cows.

5.
Biomed Res Int ; 2024: 5516117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071244

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen associated with a wide range of infections in humans and animals. Thus, the emergence of MRSA clones poses an important threat to human and animal health. This study is aimed at elucidating the genomics insights of a strong biofilm-producing and multidrug-resistant (MDR) S. aureus MTR_BAU_H1 strain through whole-genome sequencing (WGS). The S. aureus MTR_BAU_H1 strain was isolated from food handlers' hand swabs in Bangladesh and phenotypically assessed for antimicrobial susceptibility and biofilm production assays. The isolate was further undergone to high throughput WGS and analysed using different bioinformatics tools to elucidate the genetic diversity, molecular epidemiology, sequence type (ST), antimicrobial resistance, and virulence gene distribution. Phenotypic analyses revealed that the S. aureus MTR_BAU_H1 strain is a strong biofilm-former and carries both antimicrobial resistance (e.g., methicillin resistance; mecA, beta-lactam resistance; blaZ and tetracycline resistance; tetC) and virulence (e.g., sea, tsst, and PVL) genes. The genome of the S. aureus MTR_BAU_H1 belonged to ST1930 that possessed three plasmid replicons (e.g., rep16, rep7c, and rep19), seven prophages, and two clustered regularly interspaced short palindromic repeat (CRISPR) arrays of varying sizes. Phylogenetic analysis showed a close evolutionary relationship between the MTR_BAU_H1 genome and other MRSA clones of diverse hosts and demographics. The MTR_BAU_H1 genome harbours 42 antimicrobial resistance genes (ARGs), 128 virulence genes, and 273 SEED subsystems coding for the metabolism of amino acids, carbohydrates, proteins, cofactors, vitamins, minerals, and lipids. This is the first-ever WGS-based study of a strong biofilm-producing and MDR S. aureus strain isolated from human hand swabs in Bangladesh that unveils new information on the resistomes (ARGs and correlated mechanisms) and virulence potentials that might be linked to staphylococcal pathogenesis in both humans and animals.


Asunto(s)
Biopelículas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Infecciones Estafilocócicas/microbiología , Secuenciación Completa del Genoma , Genómica , Genoma Bacteriano/genética , Manipulación de Alimentos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Virulencia/genética , Factores de Virulencia/genética , Filogenia , Farmacorresistencia Bacteriana Múltiple/genética
6.
Microbiol Resour Announc ; 13(6): e0023624, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38700341

RESUMEN

We performed whole-genome sequencing of four multidrug-resistant Enterococcus avium strains isolated from milk (4M1), feces (4F1 and 4F2), and farm soil (4S1) of mastitic dairy cows. The draft genomes of E. avium strains 4M1, 4F1, 4F2, and 4S1 were approximately 4.2 Mbp, with 39.1% GC content and 66.5× coverage.

7.
PLoS One ; 19(5): e0303047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38691556

RESUMEN

The field of fish microbiome research has rapidly been advancing, primarily focusing on farmed or laboratory fish species rather than natural or marine fish populations. This study sought to reveal the distinctive gut bacteriome composition and diversity within the anadromous fish species Tenualosa ilisha (hilsa), which holds the status of being the national fish of Bangladesh. We conducted an analysis on 15 gut samples obtained from 15 individual hilsa fishes collected from three primary habitats (e.g., freshwater = 5, brackish water = 5 and marine water = 5) in Bangladesh. The analysis utilized metagenomics based on 16S rRNA gene sequencing targeting the V3-V4 regions. Our comprehensive identification revealed a total of 258 operational taxonomic units (OTUs). The observed OTUs were represented by six phyla, nine classes, 19 orders, 26 families and 40 genera of bacteria. Our analysis unveiled considerable taxonomic differences among the habitats (freshwater, brackish water, and marine water) of hilsa fishes, as denoted by a higher level of shared microbiota (p = 0.007, Kruskal-Wallis test). Among the identified genera in the gut of hilsa fishes, including Vagococcus, Morganella, Enterobacter, Plesiomonas, Shigella, Clostridium, Klebsiella, Serratia, Aeromonas, Macrococcus, Staphylococcus, Proteus, and Hafnia, several are recognized as fish probiotics. Importantly, some bacterial genera such as Sinobaca, Synechococcus, Gemmata, Serinicoccus, Saccharopolyspora, and Paulinella identified in the gut of hilsa identified in this study have not been reported in any aquatic or marine fish species. Significantly, we observed that 67.50% (27/40) of bacterial genera were found to be common among hilsa fishes across all three habitats. Our findings offer compelling evidence for the presence of both exclusive and communal bacteriomes within the gut of hilsa fishes, exhibiting potential probiotic properties. These observations could be crucial for guiding future microbiome investigations in this economically significant fish species.


Asunto(s)
Peces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , Bangladesh , Microbioma Gastrointestinal/genética , Peces/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Filogenia
8.
PLoS One ; 19(4): e0296542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626002

RESUMEN

The emergence and spread of multidrug-resistant pathogens like Pseudomonas aeruginosa are major concerns for public health worldwide. This study aimed to assess the prevalence of P. aeruginosa in clinical, environmental, and poultry sources in Bangladesh, along with their antibiotic susceptibility and the profiling of ß-lactamase and virulence genes using standard molecular and microbiology techniques. We collected 110 samples from five different locations, viz., BAU residential area (BAURA; n = 15), BAU Healthcare Center (BAUHCC; n = 20), BAU Veterinary Teaching Hospital (BAUVTH; n = 22), Poultry Market (PM; n = 30) and Mymensingh Medical College Hospital (MCCH; n = 23). After overnight enrichment in nutrient broth, 89 probable Pseudomonas isolates (80.90%) were screened through selective culture, gram-staining and biochemical tests. Using genus- and species-specific PCR, we confirmed 22 isolates (20.0%) as P. aeruginosa from these samples. Antibiogram profiling revealed that 100.0% P. aeruginosa isolates (n = 22) were multidrug-resistant isolates, showing resistance against Doripenem, Penicillin, Ceftazidime, Cefepime, and Imipenem. Furthermore, resistance to aztreonam was observed in 95.45% isolates. However, P. aeruginosa isolates showed a varying degree of sensitivity against Amikacin, Gentamicin, and Ciprofloxacin. The blaTEM gene was detected in 86.0% isolates, while blaCMY, blaSHV and blaOXA, were detected in 27.0%, 18.0% and 5.0% of the P. aeruginosa isolates, respectively. The algD gene was detected in 32.0% isolates, whereas lasB and exoA genes were identified in 9.0% and 5.0% P. aeruginosa isolates. However, none of the P. aeruginosa isolates harbored exoS gene. Hence, this study provides valuable and novel insights on the resistance and virulence of circulating P. aeruginosa within the clinical, environmental, and poultry environments of Bangladesh. These findings are crucial for understanding the emergence of ß-lactamase resistance in P. aeruginosa, highlighting its usefulness in the treatment and control of P. aeruginosa infections in both human and animal populations.


Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Humanos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , beta-Lactamasas/genética , beta-Lactamasas/uso terapéutico , Virulencia/genética , Hospitales Veterinarios , Bangladesh , Aves de Corral , Hospitales de Enseñanza , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
9.
Biomed Res Int ; 2024: 5554208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595330

RESUMEN

Shigella stands as a major contributor to bacterial dysentery worldwide scale, particularly in developing countries with inadequate sanitation and hygiene. The emergence of multidrug-resistant strains exacerbates the challenge of treating Shigella infections, particularly in regions where access to healthcare and alternative antibiotics is limited. Therefore, investigations on how bacteria evade antibiotics and eventually develop resistance could open new avenues for research to develop novel therapeutics. The aim of this study was to analyze whole genome sequence (WGS) of human pathogenic Shigella spp. to elucidate the antibiotic resistance genes (ARGs) and their mechanism of resistance, gene-drug interactions, protein-protein interactions, and functional pathways to screen potential therapeutic candidate(s). We comprehensively analyzed 45 WGS of Shigella, including S. flexneri (n = 17), S. dysenteriae (n = 14), S. boydii (n = 11), and S. sonnei (n = 13), through different bioinformatics tools. Evolutionary phylogenetic analysis showed three distinct clades among the circulating strains of Shigella worldwide, with less genomic diversity. In this study, 2,146 ARGs were predicted in 45 genomes (average 47.69 ARGs/genome), of which only 91 ARGs were found to be shared across the genomes. Majority of these ARGs conferred their resistance through antibiotic efflux pump (51.0%) followed by antibiotic target alteration (23%) and antibiotic target replacement (18%). We identified 13 hub proteins, of which four proteins (e.g., tolC, acrR, mdtA, and gyrA) were detected as potential hub proteins to be associated with antibiotic efflux pump and target alteration mechanisms. These hub proteins were significantly (p < 0.05) enriched in biological process, molecular function, and cellular components. Therefore, the finding of this study suggests that human pathogenic Shigella strains harbored a wide range of ARGs that confer resistance through antibiotic efflux pumps and antibiotic target modification mechanisms, which must be taken into account to devise and formulate treatment strategy against this pathogen. Moreover, the identified hub proteins could be exploited to design and develop novel therapeutics against MDR pathogens like Shigella.


Asunto(s)
Disentería Bacilar , Shigella , Humanos , Filogenia , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Shigella/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Disentería Bacilar/tratamiento farmacológico , Disentería Bacilar/genética , Disentería Bacilar/microbiología , Shigella flexneri
10.
Microbiol Resour Announc ; : e0014824, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602401

RESUMEN

This study reports the draft genome of Leuconostoc falkenbergense strain BSMRAU-M1L5, isolated from artisanal buffalo milk curd in Bangladesh. The draft genome spans 1,776,471 bp, with 50× coverage and 96 contigs.

11.
Microbiol Resour Announc ; : e0023824, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619270

RESUMEN

We sequenced the genomes of Pediococcus pentosaceus strains MBBL4 and MBBL6, isolated from raw milk samples of healthy cows. The draft genomes of the MBBL4 and MBBL6 were 1,896,831 bp and 1,849,397 bp, respectively, and were fragmented into 58 and 42 contigs, with coverages of 118.2× and 128.7×, respectively.

12.
Heliyon ; 10(5): e26723, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434354

RESUMEN

Escherichia coli is one of the major pathogens causing mastitis in lactating mammals. We hypothesized that E. coli from the gut and mammary glands may have similar genomic characteristics in the causation of mastitis. To test this hypothesis, we used whole genome sequencing to analyze two multidrug resistant E. coli strains isolated from mammary tissue (G2M6U) and fecal sample (G6M1F) of experimentally induced mastitis mice. Both strains showed resistance to multiple (>7) antibiotics such as oxacillin, aztreonam, nalidixic acid, streptomycin, gentamicin, cefoxitin, ampicillin, tetracycline, azithromycin and nitrofurantoin. The genome of E. coli G2M6U had 59 antimicrobial resistance genes (ARGs) and 159 virulence factor genes (VFGs), while the E. coli G6M1F genome possessed 77 ARGs and 178 VFGs. Both strains were found to be genetically related to many E. coli strains causing mastitis and enteric diseases originating from different hosts and regions. The G6M1F had several unique ARGs (e.g., QnrS1, sul2, tetA, tetR, emrK, blaTEM-1/105, and aph(6)-Id, aph(3″)-Ib) conferring resistance to certain antibiotics, whereas G2M6U had a unique heat-stable enterotoxin gene (astA) and 7192 single nucleotide polymorphisms. Furthermore, there were 43 and 111 unique genes identified in G2M6U and G6M1F genomes, respectively. These results indicate distinct differences in the genomic characteristics of E. coli strain G2M6U and G6M1F that might have important implications in the pathophysiology of mammalian mastitis, and treatment strategies for mastitis in dairy animals.

13.
Microbiol Resour Announc ; 13(3): e0128923, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38358277

RESUMEN

We sequenced the genome of Leuconostoc citreum strains BSMRAU-M1L6 and BSMRAU-M1L13 isolated from artisanal buffalo milk curd in Bangladesh. The draft genomes of BSMRAU-M1L6 and BSMRAU-M1L13 are 1,869,891 and 1,890,611 bp, respectively, with 50.0× coverage (both) and 65 and 75 contigs, respectively.

14.
Microbiol Resour Announc ; 13(1): e0061923, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38088574

RESUMEN

Herein this study, we sequenced the genome of a multidrug-resistant Salmonella enterica serovar Typhimurium strain MBR-MFRK-23 isolated from the liver tissue of a diseased layer chicken. The 4,964,854-bp draft genome comprises 50 contigs with 50.5× coverage and 52.1% GC content and is typed as S. enterica sequence type 19.

15.
Microbes Infect ; 26(3): 105285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38154518

RESUMEN

Non-aureus staphylococci (NAS) represent a major etiological agent in dairy animal mastitis, yet their role and impact remain insufficiently studied. This study aimed to elucidate the genomic characteristics of a newly identified multidrug-resistant NAS strain, specifically Staphylococcus warneri G1M1F, isolated from murine feces in an experimental mastitis model. Surprisingly, NAS species accounted for 54.35 % of murine mastitis cases, with S. warneri being the most prevalent at 40.0 %. S. warneri G1M1F exhibited resistance to 10 major antibiotics. Whole-genome sequencing established a genetic connection between G1M1F and S. warneri strains isolated previously from various sources including mastitis milk in dairy animals, human feces and blood across diverse geographical regions. Genomic analysis of S. warneri G1M1F unveiled 34 antimicrobial resistance genes (ARGs), 30 virulence factor genes (VFGs), and 278 metabolic features. A significant portion of identified ARGs (64 %) conferred resistance through antibiotic efflux pumps, while VFGs primarily related to bacterial adherence and biofilm formation. Inoculation with G1M1F in mice resulted in pronounced inflammatory lesions in mammary and colon tissues, indicating pathogenic potential. Our findings highlight distinctive genomic traits in S. warneri G1M1F, signifying the emergence of a novel multidrug-resistant NAS variant. These insights contribute to understanding NAS-related mastitis pathophysiology and inform strategies for effective treatment in dairy animals.


Asunto(s)
Mastitis Bovina , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Staphylococcus , Femenino , Bovinos , Humanos , Animales , Ratones , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Mastitis Bovina/microbiología , Antibacterianos/farmacología , Genómica , Leche/microbiología
16.
Microbiol Resour Announc ; 12(11): e0073023, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37902381

RESUMEN

Klebsiella pneumoniae is one of the most important mastitis-causing pathogens. The multidrug-resistant K. pneumoniae strain MNH_G2C5F was isolated from the feces of a cow with clinical mastitis. The MNH_G2C5F strain had a genome size of 5,381,832 bp (85.0× coverage) and typed as sequence type 273 (ST273).

17.
Sci Rep ; 13(1): 18644, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903828

RESUMEN

The identification of deleterious mutations in different variants of SARS-CoV-2 and their roles in the morbidity of COVID-19 patients has yet to be thoroughly investigated. To unravel the spectrum of mutations and their effects within SARS-CoV-2 genomes, we analyzed 5,724 complete genomes from deceased COVID-19 patients sourced from the GISAID database. This analysis was conducted using the Nextstrain platform, applying a generalized time-reversible model for evolutionary phylogeny. These genomes were compared to the reference strain (hCoV-19/Wuhan/WIV04/2019) using MAFFT v7.470. Our findings revealed that SARS-CoV-2 genomes from deceased individuals belonged to 21 Nextstrain clades, with clade 20I (Alpha variant) being the most predominant, followed by clade 20H (Beta variant) and clade 20J (Gamma variant). The majority of SARS-CoV-2 genomes from deceased patients (33.4%) were sequenced in North America, while the lowest percentage (0.98%) came from Africa. The 'G' clade was dominant in the SARS-CoV-2 genomes of Asian, African, and North American regions, while the 'GRY' clade prevailed in Europe. In our analysis, we identified 35,799 nucleotide (NT) mutations throughout the genome, with the highest frequency (11,402 occurrences) found in the spike protein. Notably, we observed 4150 point-specific amino acid (AA) mutations in SARS-CoV-2 genomes, with D614G (20%) and N501Y (14%) identified as the top two deleterious mutations in the spike protein on a global scale. Furthermore, we detected five common deleterious AA mutations, including G18V, W45S, I33T, P30L, and Q418H, which play a key role in defining each clade of SARS-CoV-2. Our novel findings hold potential value for genomic surveillance, enabling the monitoring of the evolving pattern of SARS-CoV-2 infection, its emerging variants, and their impact on the development of effective vaccination and control strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética , Aminoácidos , Mutación , Filogenia
18.
Microbiol Resour Announc ; 12(11): e0064723, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37846982

RESUMEN

We announce the genome sequence of the Staphylococcus gallinarum MTR_B001 strain isolated from the breast muscle of a chicken in 2022 in Bangladesh. This assembled genome had an estimated length of 2,889,393 bp (with 50× genome coverage), 15 contigs, 36 predicted antibiotic resistance genes, and 27 predicted virulence factor genes.

20.
Microbiol Resour Announc ; 12(10): e0059723, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37712684

RESUMEN

This announcement provides the genome sequence of the biofilm-forming methicillin-resistant Staphylococcus aureus MTR_V1 strain isolated from a ready-to-eat food sample in Bangladesh. Our assembled genome had a length of 2.8 Mb, 27 contigs, two CRISPR arrays, 38 predicted antibiotic resistance genes, and 66 predicted virulence factor genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA