Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Res Sq ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39399673

RESUMEN

Networks of miniature bioelectronic implants would enable precise measurement and manipulation of the complex and distributed physiological systems in the body. For example, sensing and stimulation nodes throughout the heart, brain, or peripheral nervous system would more accurately track and treat disease or support prosthetic technologies with many degrees of freedom. A main challenge to creating this type of in-body bioelectronic network is the fact that wireless power and data transfer are often inefficient when communicating through biological tissues. This challenge is typically compounded as one increases the number of implants within the network. Here, we show that magnetoelectric wireless data and power transfer enable a network of millimeter-sized bioelectronic implants where the power transfer efficiency of the system improves as the number of implanted devices increases. Using this property, we demonstrate networks of wireless battery-free bioelectronics ranging from 1 to 6 implants where the wireless power transfer efficiency for the system increases from 0.2% to 1.3%, with each node in the network receiving 2.2 mW at a distance of 1 cm. We use this system for efficient and robust wireless data and power transfer to demonstrate proof-of-concept networks of miniature spinal cord stimulators and cardiac pacing devices in large animals. The scalability of this network architecture enabled by magnetoelectric wireless power transfer provides a platform for building wireless closed-loop networks of bioelectronic implants for next-generation electronic medicine.

2.
Res Sq ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39108479

RESUMEN

Intracerebral hemorrhage (ICH) poses acute fatality and long-term neurological risks due to hemin and iron accumulation from hemoglobin breakdown. Our observation that hemin induces DNA double-strand breaks (DSBs), prompting a senescence-like phenotype in neurons, necessitating deeper exploration of cellular responses. Using experimental ICH models and human ICH patient tissue, we elucidate hemin-mediated DNA damage response (DDR) inducing transient senescence and delayed expression of heme oxygenase (HO-1). HO-1 co-localizes with senescence-associated ß-Galactosidase (SA-ß-Gal) in ICH patient tissues, emphasizing clinical relevance of inducible HO-1 expression in senescent cells. We reveal a reversible senescence state protective against acute cell death by hemin, while repeat exposure leads to long-lasting senescence. Inhibiting early senescence expression increases cell death, supporting the protective role of senescence against hemin toxicity. Hemin-induced senescence is attenuated by a pleiotropic carbon nanoparticle that is a catalytic mimic of superoxide dismutase, but this treatment increased lipid peroxidation, consistent with ferroptosis from hemin breakdown released iron. When coupled with iron chelator deferoxamine (DEF), the nanoparticle reduces hemin-induced senescence and upregulates factors protecting against ferroptosis. Our study suggests transient senescence induced by DDR as an early potential neuroprotective mechanism in ICH, but the risk or iron-related toxicity supports a multi-pronged therapeutic approach.

3.
Front Neurol ; 15: 1422357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39087009

RESUMEN

Introduction: Spinal cord injury (SCI) animal models often utilize an open surgical laminectomy, which results in animal morbidity and also leads to changes in spinal canal diameter, spinal cord perfusion, cerebrospinal fluid flow dynamics, and spinal stability which may confound SCI research. Moreover, the use of open surgical laminectomy for injury creation lacks realism when considering human SCI scenarios. Methods: We developed a novel, image-guided, minimally invasive, large animal model of SCI which utilizes a kyphoplasty balloon inserted into the epidural space via an interlaminar approach without the need for open surgery. Results: The model was validated in 5 Yucatán pigs with imaging, neurofunctional, histologic, and electrophysiologic findings consistent with a mild compression injury. Discussion: Few large animal models exist that have the potential to reproduce the mechanisms of spinal cord injury (SCI) commonly seen in humans, which in turn limits the relevance and applicability of SCI translational research. SCI research relies heavily on animal models, which typically involve an open surgical, dorsal laminectomy which is inherently invasive and may have untoward consequences on animal morbidity and spinal physiology that limit translational impact. We developed a minimally invasive, large animal model of spinal cord injury which utilizes a kyphoplasty balloon inserted percutaneously into the spinal epidural space. Balloon inflation results in a targeted, compressive spinal cord injury with histological and electrophysiological features directly relevant to human spinal cord injury cases without the need for invasive surgery. Balloon inflation pressure, length of time that balloon remains inflated, and speed of inflation may be modified to achieve variations in injury severity and subtype.

4.
Commun Biol ; 7(1): 869, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020197

RESUMEN

Electrokinetic convection-enhanced delivery (ECED) utilizes an external electric field to drive the delivery of molecules and bioactive substances to local regions of the brain through electroosmosis and electrophoresis, without the need for an applied pressure. We characterize the implementation of ECED to direct a neutrally charged fluorophore (3 kDa) from a doped biocompatible acrylic acid/acrylamide hydrogel placed on the cortical surface. We compare fluorophore infusion profiles using ECED (time = 30 min, current = 50 µA) and diffusion-only control trials, for ex vivo (N = 18) and in vivo (N = 12) experiments. The linear intensity profile of infusion to the brain is significantly higher in ECED compared to control trials, both for in vivo and ex vivo. The linear distance of infusion, area of infusion, and the displacement of peak fluorescence intensity along the direction of infusion in ECED trials compared to control trials are significantly larger for in vivo trials, but not for ex vivo trials. These results demonstrate the effectiveness of ECED to direct a solute from a surface hydrogel towards inside the brain parenchyma based predominantly on the electroosmotic vector.


Asunto(s)
Encéfalo , Convección , Sistemas de Liberación de Medicamentos , Hidrogeles , Hidrogeles/química , Encéfalo/metabolismo , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/administración & dosificación , Masculino , Ratas
5.
Methods Mol Biol ; 2761: 589-597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427263

RESUMEN

Immunolabeling-enabled imaging of solvent-cleared organs (iDISCO) (Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M, Cell 159:896-910, 2014) aims to match the refractive index (RI) of tissue to the surrounding medium, thereby facilitating three-dimensional (3D) imaging and quantification of cellular points and tissue structures. Once cleared, transparent tissue samples allow for rapid imaging with no mechanical sectioning. This imaging technology enables us to visualize brain tissue in situ and quantify the morphology and extent of glial cell branches or neuronal processes extending from the epicenter of a traumatic brain injury (TBI). In this way, we can more accurately assess and quantify the damaging consequences of TBI not only in the impact region but also in the extended pericontusional regions.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microscopía , Ratones , Animales , Imagenología Tridimensional/métodos , Solventes , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Encéfalo
6.
Mol Oncol ; 18(3): 517-527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37507199

RESUMEN

TWIST1 (TW) is a pro-oncogenic basic helix-loop-helix (bHLH) transcription factor and promotes the hallmark features of malignancy (e.g., cell invasion, cancer cell stemness, and treatment resistance), which contribute to poor prognoses of glioblastoma (GBM). We previously reported that specific TW dimerization motifs regulate unique cellular phenotypes in GBM. For example, the TW:E12 heterodimer increases periostin (POSTN) expression and promotes cell invasion. TW dimer-specific transcriptional regulation requires binding to the regulatory E-box consensus sequences, but alternative bHLH dimers that balance TW dimer activity in regulating pro-oncogenic TW target genes are unknown. We leveraged the ENCODE DNase I hypersensitivity data to identify E-box sites and tethered TW:E12 and TW:TW proteins to validate dimer binding to E-boxes in vitro. Subsequently, TW knockdown revealed a novel TCF4:TCF12 bHLH dimer occupying the same TW E-box site that, when expressed as a tethered TCF4:TCF12 dimer, markedly repressed POSTN expression and extended animal survival. These observations support TCF4:TCF12 as a novel dimer with tumor-suppressor activity in GBM that functions in part through displacement of and/or competitive inhibition of pro-oncogenic TW dimers at E-box sites.


Asunto(s)
Glioblastoma , Animales , Glioblastoma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica , Dimerización
7.
Sci Rep ; 13(1): 15323, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714920

RESUMEN

The effect of the mechanical micro-environment on spinal cord injury (SCI) and treatment effectiveness remains unclear. Currently, there are limited imaging methods that can directly assess the localized mechanical behavior of spinal cords in vivo. In this study, we apply new ultrasound elastography (USE) techniques to assess SCI in vivo at the site of the injury and at the time of one week post injury, in a rabbit animal model. Eleven rabbits underwent laminectomy procedures. Among them, spinal cords of five rabbits were injured during the procedure. The other six rabbits were used as control. Two neurological statuses were achieved: non-paralysis and paralysis. Ultrasound data were collected one week post-surgery and processed to compute strain ratios. Histologic analysis, mechanical testing, magnetic resonance imaging (MRI), computerized tomography and MRI diffusion tensor imaging (DTI) were performed to validate USE results. Strain ratios computed via USE were found to be significantly different in paralyzed versus non-paralyzed rabbits. The myelomalacia histologic score and spinal cord Young's modulus evaluated in selected animals were in good qualitative agreement with USE assessment. It is feasible to use USE to assess changes in the spinal cord of the presented animal model. In the future, with more experimental data available, USE may provide new quantitative tools for improving SCI diagnosis and prognosis.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Lagomorpha , Traumatismos de la Médula Espinal , Animales , Conejos , Imagen de Difusión Tensora , Traumatismos de la Médula Espinal/diagnóstico por imagen
8.
J Neural Eng ; 20(5)2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37524080

RESUMEN

Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Ratas , Femenino , Animales , Optogenética , Proteína GAP-43 , Laminina , Calidad de Vida , Médula Espinal , Miembro Anterior/patología , Miembro Anterior/fisiología , Recuperación de la Función/fisiología
9.
Cell Rep ; 42(5): 112486, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37149868

RESUMEN

Recent studies have revealed the heterogeneous nature of astrocytes; however, how diverse constituents of astrocyte-lineage cells are regulated in adult spinal cord after injury and contribute to regeneration remains elusive. We perform single-cell RNA sequencing of GFAP-expressing cells from sub-chronic spinal cord injury models and identify and compare with the subpopulations in acute-stage data. We find subpopulations with distinct functional enrichment and their identities defined by subpopulation-specific transcription factors and regulons. Immunohistochemistry, RNAscope experiments, and quantification by stereology verify the molecular signature, location, and morphology of potential resident neural progenitors or neural stem cells in the adult spinal cord before and after injury and uncover the populations of the intermediate cells enriched in neuronal genes that could potentially transition into other subpopulations. This study has expanded the knowledge of the heterogeneity and cell state transition of glial progenitors in adult spinal cord before and after injury.


Asunto(s)
Neuroglía , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/genética , Astrocitos , Neuronas , Médula Espinal , Análisis de Secuencia de ARN
10.
J Vis Exp ; (193)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067267

RESUMEN

The overall goal of this procedure is to perform stereotaxy in the pig brain with real-time magnetic resonance (MR) visualization guidance to provide precise infusions. The subject was positioned prone in the MR bore for optimal access to the top of the skull with the torso raised, the neck flexed, and the head inclined downward. Two anchor pins anchored on the bilateral zygoma held the head steady using the head holder. A magnetic resonance imaging (MRI) flex-coil was placed rostrally across the head holder so that the skull was accessible for the intervention procedure. A planning grid placed on the scalp was used to determine the appropriate entry point of the cannula. The stereotactic frame was secured and aligned iteratively through software projection until the projected radial error was less than 0.5 mm. A hand drill was used to create a burr hole for insertion of the cannula. A gadolinium-enhanced co-infusion was used to visualize the infusion of a cell suspension. Repeated T1-weighted MRI scans were registered in real time during the agent delivery process to visualize the volume of gadolinium distribution. MRI-guided stereotaxy allows for precise and controlled infusion into the pig brain, with concurrent monitoring of cannula insertion accuracy and determination of the agent volume of distribution.


Asunto(s)
Encéfalo , Gadolinio , Animales , Porcinos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Técnicas Estereotáxicas , Espectroscopía de Resonancia Magnética
11.
Behav Brain Res ; 439: 114188, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395979

RESUMEN

Spinal cord injury (SCI) research with animals aims to understand the neurophysiological responses resultant of injury and to identify effective interventions that can translate into clinical treatments in the future. Consistent and reliable assessments to properly measure outcomes are essential to achieve this aim and avoid issues with reproducibility. The objective of this study was to establish a baseline for implementing the forelimb reaching task (FRT) assessment and analysis that increased reproducibility of our studies. For this study, we implemented a weekly FRT training program for six weeks. During this time the language of the scoring rubric for movement elements that comprise a reaching task was simplified and expanded. We calculated intra- and inter-rater variability among participants of the study both before and after training to determine the effect changes made had on rigor and reproducibility of this behavioral assessment in a cervical SCI rodent model. All animals (n = 19) utilized for FRT behavioral assessments received moderate contusion injuries using the Ohio State University device and were tested for a period of 5 weeks post-SCI. Videos used for scoring were edited and shared with all participants of this study to test FRT score variability and the effect simplification of the scoring rubric had on overall inter-rater reliability. From our results we determined training for a minimum of three weeks in FRT analysis is necessary for rigor and reproducibility of our behavioral studies, as well as the need for two raters to be assigned per animal to ensure accuracy of results.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Animales , Reproducibilidad de los Resultados , Médula Cervical/lesiones , Roedores , Modelos Animales de Enfermedad , Miembro Anterior , Recuperación de la Función/fisiología , Médula Espinal
12.
World Neurosurg ; 166: e460-e468, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35840094

RESUMEN

OBJECTIVE: A Stereotaxic Atlas of the Human Lumbar-Sacral Spinal Cord has been created to provide an anatomical basis for radiologic and ultrasonic imaging and electrophysiological examination, which are used to target the placement of lumbar-sacral epidural stimulating electrodes and cellular transplantation in order to restore movement in individuals with sustained spinal cord injury or a degenerative disorder of the spinal cord. Through the availability of an atlas that exhibits axial images of the cytoarchitecture of each cord segment with a stereotaxic millimeter grid of dorsal-ventral depth from the midline dorsal surface of the cord and right-left distances from the midline of the cord, neuromodulation, and cellular therapy would undoubtedly be made not only more precise but also safer for patients. METHODS: The atlas is based upon dimension measurements and subsequent serial sectioning, staining and high-resolution digital imaging of the lumbar-sacral enlargement of 20 adult human spinal cords. RESULTS: Nissl stained cross-sections from cord segments L1-S3 illustrate the cytoarchitecture and stereotactic coordinates. CONCLUSIONS: The atlas provides an anatomical basis for radiologic and physiologic confirmation of target localization in the lumbar-sacral spinal cord.


Asunto(s)
Sacro , Traumatismos de la Médula Espinal , Adulto , Humanos , Región Lumbosacra , Región Sacrococcígea , Sacro/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiología
13.
Ageing Res Rev ; 80: 101687, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843590

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to impact our lives by causing widespread illness and death and poses a threat due to the possibility of emerging strains. SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) before entering vital organs of the body, including the brain. Studies have shown systemic inflammation, cellular senescence, and viral toxicity-mediated multi-organ failure occur during infectious periods. However, prognostic investigations suggest that both acute and long-term neurological complications, including predisposition to irreversible neurodegenerative diseases, can be a serious concern for COVID-19 survivors, especially the elderly population. As emerging studies reveal sites of SARS-CoV-2 infection in different parts of the brain, potential causes of chronic lesions including cerebral and deep-brain microbleeds and the likelihood of developing stroke-like pathologies increases, with critical long-term consequences, particularly for individuals with neuropathological and/or age-associated comorbid conditions. Our recent studies linking the blood degradation products to genome instability, leading to cellular senescence and ferroptosis, raise the possibility of similar neurovascular events as a result of SARS-CoV-2 infection. In this review, we discuss the neuropathological consequences of SARS-CoV-2 infection in COVID survivors, focusing on possible hemorrhagic damage in brain cells, its association to aging, and the future directions in developing mechanism-guided therapeutic strategies.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Anciano , Encéfalo/metabolismo , COVID-19/complicaciones , Hemorragia , Humanos , Enfermedades del Sistema Nervioso/patología , SARS-CoV-2
14.
J Neural Eng ; 19(4)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35732141

RESUMEN

Objective.Transcutaneous spinal cord stimulation (TSS) has been shown to be a promising non-invasive alternative to epidural spinal cord stimulation for improving outcomes of people with spinal cord injury (SCI). However, studies on the effects of TSS on cortical activation are limited. Our objectives were to evaluate the spatiotemporal effects of TSS on brain activity, and determine changes in functional connectivity under several different stimulation conditions. As a control, we also assessed the effects of functional electrical stimulation (FES) on cortical activity.Approach. Non-invasive scalp electroencephalography (EEG) was recorded during TSS or FES while five neurologically intact participants performed one of three lower-limb tasks while in the supine position: (1) A no contraction control task, (2) a rhythmic contraction task, or (3) a tonic contraction task. After EEG denoising and segmentation, independent components (ICs) were clustered across subjects to characterize sensorimotor networks in the time and frequency domains. ICs of the event related potentials (ERPs) were calculated for each cluster and condition. Next, a Generalized Partial Directed Coherence (gPDC) analysis was performed on each cluster to compare the functional connectivity between conditions and tasks.Main results. IC analysis of EEG during TSS resulted in three clusters identified at Brodmann areas (BA) 9, BA 6, and BA 4, which are areas associated with working memory, planning, and movement control. Lastly, we found significant (p < 0.05, adjusted for multiple comparisons) increases and decreases in functional connectivity of clusters during TSS, but not during FES when compared to the no stimulation conditions.Significance.The findings from this study provide evidence of how TSS recruits cortical networks during tonic and rhythmic lower limb movements. These results have implications for the development of spinal cord-based computer interfaces, and the design of neural stimulation devices for the treatment of pain and sensorimotor deficit.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Electroencefalografía , Humanos , Movimiento/fisiología , Estimulación de la Médula Espinal/métodos
15.
J Cell Biol ; 221(4)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35139144

RESUMEN

Astrocyte reactivity can directly modulate nervous system function and immune responses during disease and injury. However, the consequence of human astrocyte reactivity in response to specific contexts and within neural networks is obscure. Here, we devised a straightforward bioengineered neural organoid culture approach entailing transcription factor-driven direct differentiation of neurons and astrocytes from human pluripotent stem cells combined with genetically encoded tools for dual cell-selective activation. This strategy revealed that Gq-GPCR activation via chemogenetics in astrocytes promotes a rise in intracellular calcium followed by induction of immediate early genes and thrombospondin 1. However, astrocytes also undergo NF-κB nuclear translocation and secretion of inflammatory proteins, correlating with a decreased evoked firing rate of cocultured optogenetic neurons in suboptimal conditions, without overt neurotoxicity. Altogether, this study clarifies the intrinsic reactivity of human astrocytes in response to targeting GPCRs and delivers a bioengineered approach for organoid-based disease modeling and preclinical drug testing.


Asunto(s)
Astrocitos/metabolismo , Bioingeniería , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Neuronas/metabolismo , Organoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenosina Trifosfato/farmacología , Astrocitos/patología , Calcio/metabolismo , Línea Celular , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inflamación/patología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células Madre Pluripotentes/metabolismo , Reproducibilidad de los Resultados , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Sinaptofisina/metabolismo
16.
Ann Clin Transl Neurol ; 8(11): 2211-2221, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34647437

RESUMEN

Intracerebral hemorrhage (ICH) remains a common and debilitating form of stroke. This neurological emergency must be diagnosed and treated rapidly yet effectively. In this article, we review the medical, surgical, repair, and regenerative treatment options for managing ICH. Topics of focus include the management of blood pressure, intracranial pressure, coagulopathy, and intraventricular hemorrhage, as well as the role of surgery, regeneration, rehabilitation, and secondary prevention. Results of various phase II and III trials are incorporated. In summary, ICH patients should undergo rapid evaluation with neuroimaging, and early interventions should include systolic blood pressure control in the range of 140 mmHg, correction of coagulopathy if indicated, and assessment for surgical intervention. ICH patients should be managed in dedicated neurosurgical intensive care or stroke units where continuous monitoring of neurological status and evaluation for neurological deterioration is rapidly possible. Extravasation of hematoma may be helpful in patients with intraventricular extension of ICH. The goal of care is to reduce mortality and enable multimodal rehabilitative therapy.


Asunto(s)
Hemorragia Cerebral/terapia , Fármacos Hematológicos , Rehabilitación Neurológica , Procedimientos Neuroquirúrgicos , Prevención Secundaria , Trasplante de Células Madre , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/cirugía , Humanos
17.
iScience ; 24(8): 102827, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34381965

RESUMEN

To repair neural circuitry following spinal cord injury (SCI), neural stem cell (NSC) transplantation has held a primary focus; however, stochastic outcomes generate challenges driven in part by NSC differentiation and tumor formation. The recent ability to generate regionally specific neurons and their support cells now allows consideration of directed therapeutic approaches with pre-differentiated and networked spinal neural cells. Here, we form encapsulated, transplantable neuronal networks of regionally matched cervical spinal motor neurons, interneurons, and oligodendrocyte progenitor cells derived through trunk-biased neuromesodermal progenitors. We direct neurite formation in alginate-based neural ribbons to generate electrically active, synaptically connected networks, characterized by electrophysiology and calcium imaging before transplantation into rodent models of contused SCI for evaluation at 10-day and 6-week timepoints. The in vivo analyses demonstrate viability and retention of interconnected synaptic networks that readily integrate with the host parenchyma to advance goals of transplantable neural circuitry for SCI treatment.

18.
Sci Rep ; 11(1): 14900, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290260

RESUMEN

Electrical stimulation of the cervical spinal cord is gaining traction as a therapy following spinal cord injury; however, it is difficult to target the cervical motor region in a rodent using a non-penetrating stimulus compared with direct placement of intraspinal wire electrodes. Penetrating wire electrodes have been explored in rodent and pig models and, while they have proven beneficial in the injured spinal cord, the negative aspects of spinal parenchymal penetration (e.g., gliosis, neural tissue damage, and obdurate inflammation) are of concern when considering therapeutic potential. We therefore designed a novel approach for epidural stimulation of the rat spinal cord using a wireless stimulation system and ventral electrode array. Our approach allowed for preservation of mobility following surgery and was suitable for long term stimulation strategies in awake, freely functioning animals. Further, electrophysiology mapping of the ventral spinal cord revealed the ventral approach was suitable to target muscle groups of the rat forelimb and, at a single electrode lead position, different stimulation protocols could be applied to achieve unique activation patterns of the muscles of the forelimb.


Asunto(s)
Vértebras Cervicales , Terapia por Estimulación Eléctrica/métodos , Estimulación Eléctrica/métodos , Electrodos Implantados , Traumatismos de la Médula Espinal/terapia , Tecnología Inalámbrica , Animales , Electromiografía , Miembro Anterior , Músculo Esquelético/fisiología , Ratas , Traumatismos de la Médula Espinal/fisiopatología
19.
Sci Data ; 8(1): 175, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267212

RESUMEN

Spinal cord injury disrupts ascending and descending neural signals causing sensory and motor dysfunction. Neuromodulation with electrical stimulation is used in both clinical and research settings to induce neural plasticity and improve functional recovery following spinal trauma. However, the mechanisms by which electrical stimulation affects recovery remain unclear. In this study we examined the effects of cortical electrical stimulation following injury on transcription at several levels of the central nervous system. We performed a unilateral, incomplete cervical spinal contusion injury in rats and delivered stimulation for one week to the contralesional motor cortex to activate the corticospinal tract and other pathways. RNA was purified from bilateral subcortical white matter and 3 levels of the spinal cord. Here we provide the complete data set in the hope that it will be useful for researchers studying electrical stimulation as a therapy to improve recovery from the deficits associated with spinal cord injury.


Asunto(s)
Estimulación Eléctrica , Tractos Piramidales/metabolismo , Traumatismos Vertebrales/genética , Transcriptoma , Sustancia Blanca/metabolismo , Animales , Terapia por Estimulación Eléctrica , Femenino , Plasticidad Neuronal , Ratas , Ratas Long-Evans , Traumatismos Vertebrales/terapia
20.
BMJ Open ; 11(5): e049721, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039579

RESUMEN

OBJECTIVES: To investigate changes in daily mental health (MH) service use and mortality in response to the introduction and the lifting of the COVID-19 'lockdown' policy in Spring 2020. DESIGN: A regression discontinuity in time (RDiT) analysis of daily service-level activity. SETTING AND PARTICIPANTS: Mental healthcare data were extracted from 10 UK providers. OUTCOME MEASURES: Daily (weekly for one site) deaths from all causes, referrals and discharges, inpatient care (admissions, discharges, caseloads) and community services (face-to-face (f2f)/non-f2f contacts, caseloads): Adult, older adult and child/adolescent mental health; early intervention in psychosis; home treatment teams and liaison/Accident and Emergency (A&E). Data were extracted from 1 Jan 2019 to 31 May 2020 for all sites, supplemented to 31 July 2020 for four sites. Changes around the commencement and lifting of COVID-19 'lockdown' policy (23 March and 10 May, respectively) were estimated using a RDiT design with a difference-in-difference approach generating incidence rate ratios (IRRs), meta-analysed across sites. RESULTS: Pooled estimates for the lockdown transition showed increased daily deaths (IRR 2.31, 95% CI 1.86 to 2.87), reduced referrals (IRR 0.62, 95% CI 0.55 to 0.70) and reduced inpatient admissions (IRR 0.75, 95% CI 0.67 to 0.83) and caseloads (IRR 0.85, 95% CI 0.79 to 0.91) compared with the pre lockdown period. All community services saw shifts from f2f to non-f2f contacts, but varied in caseload changes. Lift of lockdown was associated with reduced deaths (IRR 0.42, 95% CI 0.27 to 0.66), increased referrals (IRR 1.36, 95% CI 1.15 to 1.60) and increased inpatient admissions (IRR 1.21, 95% CI 1.04 to 1.42) and caseloads (IRR 1.06, 95% CI 1.00 to 1.12) compared with the lockdown period. Site-wide activity, inpatient care and community services did not return to pre lockdown levels after lift of lockdown, while number of deaths did. Between-site heterogeneity most often indicated variation in size rather than direction of effect. CONCLUSIONS: MH service delivery underwent sizeable changes during the first national lockdown, with as-yet unknown and unevaluated consequences.


Asunto(s)
COVID-19 , Servicios de Salud Mental , Adolescente , Anciano , Niño , Control de Enfermedades Transmisibles , Humanos , Políticas , SARS-CoV-2 , Reino Unido/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA