Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Food Microbiol ; 426: 110928, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39393259

RESUMEN

Hafnia alvei is a spoilage microorganism that possesses the LuxI/LuxR-type quorum sensing (QS) system. Biogenic amines (BAs) are important in food spoilage and safety, yet the role of QS in BA formation remains poorly understood. This study investigated the ability of H. alvei H4 to produce BAs in fish flesh and decarboxylase culture media. The findings showed that H. alvei H4 produced substantial amounts of putrescine and cadaverine in turbot flesh, with its enhanced amine-producing capacity potentially leading to the eventual deterioration of the fish. Furthermore, the deletion of the QS element-AHL synthase gene luxI-affected the concentrations of both BAs. Based on these observations, the present study conducted multifaceted experiments, including phenotypic assessments and analyses of gene expression, to explore the role of luxI and to identify its specific binding targets. The results indicated that putrescine formation in H. alvei H4 primarily occurred via the arginine deiminase (ADI) pathway, with luxI playing a positive role in the conversion of arginine to ornithine and subsequently to putrescine. The reduction in putrescine content observed in a luxI mutant (ΔluxI) was attributed to the direct binding of the LuxI protein to the promoters of the argF and speC genes, which code for ornithine carbamoyltransferase and ornithine decarboxylase, respectively. The findings of this study provided the basis to understand the influence of QS on BA production in H. alvei, by specifically demonstrating the involvement of the luxI gene on putrescine and cadaverine production.

2.
Talanta ; 281: 126815, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241648

RESUMEN

Salmonella enteritidis (SE) is a food-borne pathogens that can cause acute gastroenteritis. With the increasing social attention to food safety, the detection method of SE has attracted wide attention. In response to the demand for efficient detection methods of SE, this study constructed a novel dual-mode photoelectrochemical-electrochemical (PEC-EC) aptamer-based biosensor. The sensor was constructed using Bi4NbO8Cl/In2S3 heterojunction as the electrode substrate material, the hybridization chain reaction (HCR) and dye sensitization were used as the signal amplification strategies. Bi4NbO8Cl/In2S3 heterojunction could provide an excellent initial photocurrent response for the sensing platform, and the HCR was opened by the end of complementary DNA (cDNA) and generated an ultra-long DNA double-stranded (dsDNA) "super structure" on the surface of the electrode, which could be embedded with a large number of methylene blue (MB) as the bifunctional probes. Thus, dual-mode output was achieved via the PEC and EC activity of MB. Under the optimized conditions, the PEC and EC signal responses of the system were linear to the logarithm of SE concentration in a range from 1.5 × 102 CFU/mL to 1.5 × 107 CFU/mL. The detection limits were found to be 12.9 CFU/mL and 12.3 CFU/mL using the PEC and EC methods, respectively. The constructed dual-mode biosensor exhibited good performance for real sample analysis, and demonstrated great application potential in the field of SE rapid detection. Moreover, this dual-mode detection strategy provided more accurate and reliable results than the single-mode output.

3.
Biosens Bioelectron ; 265: 116705, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39182412

RESUMEN

Self-powered photoelectrochemical (PEC) sensing is a novel sensing modality. The introduction of dual-mode sensing and photoelectrocatalysis in a self-powered system enables both detection and sterilization purposes. To this end, herein, a self-powered multifunctional platform for the photoelectrochemical-fluorescence (PEC-FL) detection and in-situ inactivation of Salmonella enteritidis (SE) was constructed. The platform utilized Bi4NbO8Cl/V2CTx/FTO as a photoanode and CuInS2/FTO as a photocathode and incubated quantum dot (QDs) signaling probes on the surface of the photocathode. During detection, the system drives the transfer of photogenerated electrons between the dual photoelectrodes through the Fermi energy level difference. The photoanode amplifies the photoelectric signal, while the photocathode is solely dedicated to the immune recognition process. QDs provide an additional fluorescence signal to the system. Under optimal experimental conditions, the multifunctional platform achieves detection limits of 3.2 and 5.3 CFU/mL in PEC and FL modes respectively, with a detection range of 2.91 × 102 to 2.91 × 108 CFU/mL. With the application of an external bias voltage, it further promotes electron transfer between the dual photoelectrodes, inhibits the recombination of photogenerated electrons and holes. It generates a significant amount of superoxide radicals (·O2-) in the cathodic region, resulting in strong sterilization efficiency (99%). The constructed self-powered multifunctional platform exhibits high sensitivity and sterilization efficiency, it provides a feasible and effective strategy to enhance the comprehensive capability of self-powered sensors.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Puntos Cuánticos , Salmonella enteritidis , Salmonella enteritidis/aislamiento & purificación , Puntos Cuánticos/química , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Límite de Detección , Electrodos , Humanos , Infecciones por Salmonella/microbiología
4.
Int J Biol Macromol ; 278(Pt 2): 134683, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147345

RESUMEN

In this study, the active food packaging film were prepared using hydroxypropyltrimethyl ammonium chloride chitosan with different substitution sites (O-HACC & N-HACC) and dialdehyde chitosan (DCS) grafted with protocatechuic acid (PA). To explore the effect of chitosan quaternization positions and crosslinking approaches on the slow-release and antibacterial properties, the double-crosslinked film were fabricated through the self-coupling reaction of PA and Schiff base reaction between amino groups on HACC and aldehyde groups on DCS. The HACC/DCS-based film exhibited stable porous three-dimensional networks with high nisin loading ratios (>90 %). With the participation of the catechol-catechol structure, the dense double-crosslinked film effectively restricted the diffusion of the water molecules, resulting in excellent slow-release properties fitting with the Korsmeyer-Peppas kinetic model. Especially, O-HACC/PA-g-DCS film, which had more reaction sites for Schiff base crosslinking than N-HACC, exhibited the equilibrium swelling ratio of 800 % at 60 h and could sustainably release nisin via non-Fickian diffusion behavior until 48 h. Moreover, the HACC/DCS-based double-crosslinked film performed good long-time antibacterial activity and preservation effects on salmon. On the 10th day of storage, the TVBN of N-HACC/PA-g-DCS and O-HACC/PA-g-DCS groups were only 28.26 ± 1.93 and 29.06 ± 1.68 mg/100 g and still lower than the thresholds.


Asunto(s)
Antibacterianos , Quitosano , Compuestos de Amonio Cuaternario , Quitosano/química , Quitosano/análogos & derivados , Antibacterianos/farmacología , Antibacterianos/química , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Embalaje de Alimentos/métodos , Nisina/química , Nisina/farmacología , Preparaciones de Acción Retardada , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacología , Cinética , Bases de Schiff/química , Liberación de Fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
5.
Langmuir ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158091

RESUMEN

In recent years, piezo-photocatalysis has become a promising strategy for solving environmental pollution problems by adding additional mechanical energy to the photocatalysis process. This work reported the effective synthesis of a variety of HKUST-1/BiVO4 heterogeneous materials by combining monoclinic BiVO4 and porous HKUST-1 semiconductors. The piezo-photocatalytic properties of HKUST-1/BiVO4 were studied by the reduction of hexavalent chromium (Cr(VI)) under visible-light irradiation and ultrasonic waves. In the piezo-photocatalysis process, the best reduction rates among as-prepared HKUST-1/BiVO4 composites were up to 96.20% of 10 ppm Cr(VI) solution, which was approximately 1.80 times that under visible light and about 4.13 times that under ultrasound. Under the action of the piezoelectric potential, the availability of free radicals increased the reduction rate of Cr(VI) and reached a synergistic effect of 1.14-fold.

6.
Foods ; 13(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998586

RESUMEN

The aim of our study was to investigate whether the combination of benzyl isothiocyanate (BITC) and resveratrol (RES) has a synergistic effect on the inhibition of inflammation in colitis. The results revealed that the BITC and RES combination (BITC_RES) was more effective than either substance alone at significantly alleviating the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice, including the prevention of colon shortening and loss of body weight, a reduction in the disease activity index, and prevention of colon damage. Similarly, compared with the DSS group, BITC_RES reduced myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) levels in the mouse colon by 1.4-3.0-fold and 1.4-fold, respectively. In addition, the combination of BITC and RES upregulated the inflammatory factor IL-10 by 1.3- and 107.4-fold, respectively, compared to the individual BITC and RES groups, whereas the proinflammatory factors, including TNF-α, IL-1ß, and IL-6, were downregulated by 1.1-7.4-, 0.7-3.6-, and 0.6-2.6-fold, respectively, in the BITC_RES group compared with the individual groups. Gut microbiome analysis indicated that BITC_RES remodeled the structure of gut bacteria at the phylum, family, and genus levels, upregulating the abundance of the phylum Bacteroidetes and the family Muribaculaceae and the genus norank_f_Muribaculaceae and downregulating the abundance of the phylum Firmicutes. Significant correlations between the relative levels of these proinflammatory cytokines and changes in the gut microbiota were found using Pearson's correlation analysis. BITC and RES exhibited synergistic effects by reshaping the gut microbiota and modulating the level of serum cellular inflammatory factors, thus exerting a protective effect against colitis.

7.
Int J Biol Macromol ; 276(Pt 1): 133689, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971272

RESUMEN

Benzyl isothiocyanate (BITC) is a naturally active bacteriostatic substance and κ-carrageenan (KC) is a good film-forming substrate. In the present study, a nanoemulsion incorporating BITC was fabricated with a particle size of 224.1 nm and an encapsulation efficiency of 69.2 %. Subsequently, the acquired BITC nanoemulsion (BITC-NE) was incorporated into the KC-based film, and the light transmittance of the prepared composite films was lower than that of the pure KC film. Fourier transform infrared spectroscopy and scanning electron microscopy revealed that BITC-NE was compatible with the KC matrix. BITC-NE incorporation enhanced the tensile strength of the KC-based films by 33.7 %, decreased the elongation at break by 33.8 %, decreased the water vapor permeability by 60.1 %, increased the maximum thermal degradation temperature by 48.8 %, and decreased the oxygen permeability by 42 % (p < 0.05). Furthermore, the composite films showed enhanced antimicrobial activity against Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas fluorescens. The developed KC-based composite films were applied to wrap raw beef, which significantly delayed the increase in total viable count, total volatile base nitrogen content, and thiobarbituric acid reactive substances, and prolonged the shelf-life of the raw beef by up to 10 days. These results indicated that the composite films prepared by incorporating BITC nanoemulsions into KC matrices have great antimicrobial application potential.


Asunto(s)
Antibacterianos , Carragenina , Emulsiones , Isotiocianatos , Carragenina/química , Carragenina/farmacología , Isotiocianatos/química , Isotiocianatos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Animales , Permeabilidad , Conservación de Alimentos/métodos , Bovinos , Carne Roja , Embalaje de Alimentos/métodos , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción
8.
Artículo en Inglés | MEDLINE | ID: mdl-38709426

RESUMEN

Staphylococcus aureus (S. aureus) is a common pathogen that can cause many serious infections. Thus, efficient and practical techniques to fight S. aureus are required. In this study, transcriptomics was used to evaluate changes in S. aureus following treatment with benzyl isothiocyanate (BITC) to determine its antibacterial action. The results revealed that the BITC at subinhibitory concentrations (1/8th MIC) treated group had 94 differentially expressed genes compared to the control group, with 52 downregulated genes. Moreover, STRING analyses were used to reveal the protein interactions encoded by 36 genes. Then, we verified three significant virulence genes by qRT-PCR, including capsular polysaccharide synthesis enzyme (cp8F), capsular polysaccharide biosynthesis protein (cp5D), and thermonuclease (nuc). Furthermore, molecular docking analysis was performed to investigate the action site of BITC with the encoded proteins of cp8F, cp5D, and nuc. The results showed that the docking fraction of BITC with selected proteins ranged from - 6.00 to - 6.60 kcal/mol, predicting the stability of these complexes. BITC forms hydrophobic, hydrogen-bonded, π-π conjugated interactions with amino acids TRP (130), GLY (10), ILE (406), LYS (368), TYR (192), and ARG (114) of these proteins. These findings will aid future research into the antibacterial effects of BITC against S. aureus.

9.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615856

RESUMEN

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.


Asunto(s)
Aminas , Celulosa , Compuestos Heterocíclicos , Estructuras Metalorgánicas , Nanofibras , Ácidos Ftálicos , Celulosa/química , Adsorción , Aminas/química , Nanofibras/química , Estructuras Metalorgánicas/química , Compuestos Heterocíclicos/química , Geles/química , Porosidad
10.
Food Chem ; 449: 139225, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599107

RESUMEN

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.


Asunto(s)
Aminas , Celulosa , Nanocompuestos , Adsorción , Aminas/química , Celulosa/química , Animales , Nanocompuestos/química , Compuestos Heterocíclicos/química , Bovinos , Porcinos , Salmón , Estructuras Metalorgánicas/química , Carne/análisis , Contaminación de Alimentos/análisis , Geles/química
11.
Foods ; 13(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38472800

RESUMEN

Hafnia alvei, a specific spoilage microorganism, has a strong capacity to destroy food protein and lead to spoilage. The aim of this study was to evaluate the phase-dependent regulation of lux-type genes on the spoilage characteristics of H. alvei H4. The auto-inducer synthase gene luxI and a regulatory gene luxR of the quorum sensing systems in H. alvei H4 were knocked out to construct the mutant phenotypes. On this basis, the research found that the luxI and luxR genes had a strong positive influence on not only flagella-dependent swimming ability and biofilm formation but also the production of putrescine and cadaverine. The luxR gene could downregulate putrescine production. The maximum accumulation of putrescine in wild type, ΔluxI, ΔluxR and ΔluxIR were detected at 24 h, reaching up to 695.23 mg/L, 683.02 mg/L, 776.30 mg/L and 724.12 mg/L, respectively. However, the luxI and luxR genes have a potential positive impact on the production of cadaverine. The maximum concentration of cadaverine produced by wild type, ΔluxI, ΔluxR and ΔluxIR were 252.7 mg/L, 194.5 mg/L, 175.1 mg/L and 154.2 mg/L at 72 h. Moreover, the self-organizing map analysis revealed the phase-dependent effects of two genes on spoilage properties. The luxI gene played a major role in the lag phase, while the luxR gene mainly acted in the exponential and stationary phases. Therefore, the paper provides valuable insights into the spoilage mechanisms of H. alvei H4.

12.
Microbiol Spectr ; 12(4): e0068723, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391231

RESUMEN

Quorum sensing (QS) regulation of functional metabolites is rarely reported but a common trait of some bacteria. In this study, we found that QS promoted the extracellular accumulation of glycine and serine while inhibiting the extracellular accumulation of methionine in Hafnia alvei H4. The correlation analysis of five QS signals with the above three QS-regulated amino acids suggested that these QS signals may have functional differences in amino acid regulation. The exogenous AHL add-back studies on genes involved in glycine, serine, and methionine metabolic pathway highlighted that N-octanoyl-l-homoserine lactone (C8-HSL) downregulated the expression of sdhC/fumA genes involved in the succinate to malate pathway, thereby reducing the metabolic flux of the tricarboxylic acid (TCA) cycle as an amino acid metabolism platform. Further in-depth research revealed that the QS system promoted the conversion of folate to tetrahydrofolate (THF) by positively regulating the expression of folA and folM, thus impairing the ability of folate to promote methionine accumulation. Moreover, folate positively regulated the expression of the QS signal synthesis gene luxI, promoting the synthesis of QS signals, which may further enhance the influence of the QS system on amino acid metabolism. These findings contribute to the understanding of amino acid metabolism regulated by QS and provide new perspectives for accurate control of metabolic regulation caused by QS.IMPORTANCEAs one of the important regulatory mechanisms of microorganisms, quorum sensing (QS) is involved in the regulation of various physiological activities. However, few studies on the regulation of amino acid metabolism by QS are available. This study demonstrated that the LuxI-type QS system of Hafnia alvei H4 was involved in the regulation of multiple amino acid metabolism, and different types of QS signals exhibited different roles in regulating amino acid metabolism. Additionally, the regulatory effects of the QS system on amino acid metabolism were investigated from two important cycles that influence the conversion of amino acids, including the TCA cycle and the folate cycle. These findings provide new ideas on the role of QS system in the regulation of amino acid metabolism in organisms.


Asunto(s)
Hafnia alvei , Percepción de Quorum , Percepción de Quorum/fisiología , Aminoácidos , Metionina , Glicina , Ácido Fólico , Serina
13.
Foods ; 13(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38275703

RESUMEN

In the food industry, foodborne spoilage bacteria often live in mixed species and attach to each other, leading to changes in spoilage characteristics. Quorum sensing (QS) has been reported to be a regulating mechanism for food spoiling by certain kinds of bacteria. Here, the contents of biofilm, extracellular polysaccharides, and biogenic amines in the coculture system of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525 were significantly reduced when the QS element of H. alvei H4 was deleted, confirming that QS of H. alvei H4 is involved in the dual-species interactions. Then, transcriptomics was used to explore the regulatory mechanism at the mRNA molecular level. The deletion of the QS element decreased the transcript levels of genes related to chemotaxis, flagellar assembly, and the two-component system pathway of H. alvei H4 in the coculture system. Furthermore, a total of 732 DEGs of P. fluorescens ATCC13525 were regulated in the dual species, which were primarily concerned with biofilm formation, ATP-binding cassette transporters, and amino acid metabolism. Taken together, the absence of the QS element of H. alvei H4 weakened the mutual cooperation of the two bacteria in the coculture system, making it a good target for managing infection with H. alvei and P. fluorescens.

14.
J Hazard Mater ; 465: 133160, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38064948

RESUMEN

Composite aerogels, formed by the combination of nanoscale polymers and highly efficient adsorbents, offer the potential to deploy adsorbent distinct separation properties into a processable matrix. This paper presents a method for the fabrication of low energy bio-aerogels with high ductility, excellent wet strength and favorable heat resistance, based on cellulose nanofibers (CNFs) bound by calcium carbonate particles (CaCO3) via a simple process of ice induction, cross-linking during freezing and freeze-drying. Due to induced defects, two-dimensional metal-organic layers (MOLs) were rich in mesoporous structure and embedded in the aerogel (AGCa-MOL), which exhibited a powerful adsorption capacity. AGCa-MOL could take full advantage of their hierarchical pores and available surface area to obtain high adsorption capacity (0.694-5.470 µmol/g) and rapid adsorption kinetics (5 min) for 14 heterocyclic aromatic amines (HAAs). Moreover, the CaCO3 particles and MOLs gave the AGCa-MOL excellent thermal stability, so that it could maintain excellent adsorption capacity at a high temperature (100 °C) and be applied as an adsorbent to remove HAAs in the boiling marinade. The intrinsic potential of composite aerogels was revealed due to the synergistic properties of the various components in the composite aerogel.

15.
Foods ; 12(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37893700

RESUMEN

In this paper, amino-carboxymethyl chitosan (ACC) was prepared through amino carboxymethylation, which introduces -COOH and -NH2 groups to the chitosan (CS) chains. Meanwhile, dialdehyde starch (DAS) was produced by oxidizing corn starch using sodium periodate. To attain the optimal loading and long-time release of ε-polylysine (ε-PL), the ACC/DAS hydrogels were synthesized through the Schiff base reaction between the amino group on ACC and the aldehyde group in DAS. The molecular structure, microcosmic properties, loading capacity, and bacteriostatic properties of the four types of hydrogels containing different mass concentrations of ACC were investigated. The results showed that the dynamic imine bond C=N existed in the ACC/DAS hydrogels, which proved that the hydrogels were formed by the cross-linking of the Schiff base reaction. With the increasing mass concentration of the ACC, the cross-sectional morphology of the hydrogel became smoother, the thermal stability increased, and the swelling behavior was gradually enhanced. The tight network structure improved the ε-PL loading efficiency, with the highest value of 99.2%. Moreover, the loading of ε-PL gave the hydrogel good antibacterial properties. These results indicate that ACC/DAS hydrogel is potential in food preservation.

16.
Microbiol Spectr ; : e0267123, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732782

RESUMEN

Hafnia species can cause food spoilage via the quorum-sensing (QS) system. Thus, strategies that target QS in these bacteria might be a good approach to safeguard the quality of processed food. In this study, the amino acid sequence of the LasI Ha protein, a key QS regulator from Hafnia alvei H4, was used to construct its 3D structure for the virtual screening of potential QS inhibitors (QSIs) from the Bioactive Compound database. Four potential QSIs were obtained, and these were all theaflavins (TFs). Among them, theaflavin-3,3´-digallate (TF3) was found to outperform the others, displaying a higher docking score according to molecular docking analysis, and required only a sub-minimal inhibitory concentration (31.25 mM) to cause a significant decrease in the production of the autoinducer N-acyl homoserine lactone in H. alvei H4 and up to 60.5% inhibition of its motility. Furthermore, molecular simulation results indicated that TF3 could stably bind to a cavity within LasI Ha to form stable hydrogen bonds and hydrophobic interactions with various key residues of the protein to exert the inhibitory effect. Thus, TF3 may be considered a potential compound to protect against food spoilage caused by H. alvei H4 via the quorum quenching. IMPORTANCE Hafnia alvei, the main strain studied in this paper, is often isolated from spoiled foods, especially refrigerated protein-based raw foods, and is generally considered to be a spoilage bacterium whose spoilage-causing properties may be closely related to its own very strong population-sensing activity, so the strategy of quorum quenching against H. alvei H4 may be a good way to guarantee the quality of processed foods. Given the current global requirements for food safety and quality, coupled with negative consumer perceptions of the excessive inclusion of synthetic chemicals in food products, the use of natural compounds as QSIs in the storage of aquatic food products would seem more attractive.

17.
Foods ; 12(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569102

RESUMEN

Fermented shrimp paste is a popular food in Asian countries. However, biogenic amines (BAs) are a typically associated hazard commonly found during the fermentation of shrimp paste and pose a food-safety danger. In this work, an autochthonic salt-tolerant Tetragenococcus muriaticus TS (T. muriaticus TS) strain was used as a starter culture for grasshopper sub shrimp paste fermentation. It was found that with the starter culture, putrescine, cadaverine, and histamine concentrations were significantly lower (p < 0.05) with a maximal reduction of 19.20%, 14.01%, and 28.62%, respectively. According to high-throughput sequencing data, T. muriaticus TS could change the interactions between species and reduce the abundance of bacterial genera positively associated with BAs, therefore inhibiting the BA accumulation during shrimp paste fermentation. Moreover, the volatile compounds during the fermentation process were also assessed by HS-SPME-GC-MS. With the starter added, the content of pyrazines increased, while the off-odor amines decreased. The odor of the shrimp paste was successfully improved. These results indicate that T. muriaticus TS can be used as an appropriate starter culture for improving the safety and quality of grasshopper sub shrimp paste.

18.
Food Chem ; 428: 136775, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423111

RESUMEN

To develop food packaging with good antibacterial activity and mechanical performance, four amino carboxymethyl chitosan (ACC)//dialdehyde starch (DAS) /polyvinyl alcohol (PVA) films were prepared by Schiff base and hydrogen bond interactions for efficient loading and release of ε-polylysine (ε-PL). The effects of the Schiff base reaction on the physicochemical properties of the films were explored based on the different aldehyde group contents in DAS. The ACC//DAS4/PVA film exhibited a tensile strength of 62.5 MPa, and the water vapor and oxygen permeability was 8.77 × 10-3·g·mm/m2·d·kPa and 0.15 × 103·cm3·mm/m2·d, respectively. By leveraging the Schiff base reaction, the film swelling properties were improved by adjusting the cross-link density, mesh size, and molecular mass between the cross-links. The ACC//DAS4/PVA film could efficiently load ε-PL with a value of 98.44% and long-term release in a food simulant of 10% ethanol at 25 °C for 120 min. Moreover, the ACC-ε-PL//DAS4/PVA film was successfully used for salmon preservation.


Asunto(s)
Quitosano , Quitosano/química , Polivinilos , Alcohol Polivinílico/química , Polilisina/química , Bases de Schiff , Antibacterianos/farmacología , Embalaje de Alimentos
19.
Food Chem ; 419: 135984, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37044056

RESUMEN

This study aimed to investigate the synergistic effects of benzyl isothiocyanate (BITC) and resveratrol (RS) on Listeria monocytogenes and their application in chicken meat preservation. BITC combined with RS (BR) significantly enhanced the antimicrobial activity and inhibited the growth of Listeria monocytogenes within 24 h compared to individual treatment, as well as suppressing bacterial swimming and swarming motility, reducing biofilm formation by 56.4%, increasing cell membrane disruption, and inducing intracellular ROS surges. Synergistic effects were associated with the inhibition of biofilm formation, cell membrane destruction, and ROS production. Biofilm removal facilitated the direct antimicrobial action of BR. RS disrupted cell membrane permeability, allowing more BITC into the cells, resulting in increased intracellular antibacterial levels, cell membrane hyperpolarization, and rapid ROS accumulation. Furthermore, BR visibly slowed the microbial growth in chicken flesh stored at 25 °C and 4 °C. Therefore, BR is expected to be a new strategy for food preservation.


Asunto(s)
Listeria monocytogenes , Animales , Pollos , Resveratrol/farmacología , Carne/microbiología , Especies Reactivas de Oxígeno/farmacología , Conservación de Alimentos/métodos , Antibacterianos/farmacología , Microbiología de Alimentos , Recuento de Colonia Microbiana
20.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36365646

RESUMEN

The 3-(Methylthio) propyl isothiocyanate (MTPITC)-loaded inclusion complex prepared by α-cyclodextrin (α-CD) was incorporated into chitosan (CS) film to fabricate a packaging material for fresh chicken meat preservation. Scanning electron microscope images indicated homogenous dispersion of the MTPITC-α-CD in CS polymer. Fourier-transform infrared and X-ray diffraction techniques revealed that MTPITC-α-CD was incorporated into the CS film matrix by the physical interactions. The introduction of MTPITC-α-CD improved the UV-vis light-blocking ability, with a slight loss of transparency. Although the water solubility and water vapor barrier capacity were not significantly influenced by the addition of MTPITC-α-CD, the antioxidant attribute was significantly enhanced. The CS-MTPITC-α-CD film displayed obvious and sustained suppressive effects against Salmonella typhimurium, with the inhibition zone diameters of 14.7 mm at 12 h and 7.3 mm at 24 h, respectively. Moreover, the quality index analysis indicated that the CS-MTPITC-α-CD film-wrapped fresh chicken, during refrigerated storage, exhibited better preservative efficacy than the control groups, with the total viable counts of 6.5 Log CFU/g, total volatile base nitrogen of 8.4 mg/100 g, pH of 6.6, thiobarbituric acid-reactive substances of 0.2 mg/kg, and the sensory score of 5 at day 16. Collectively, these results suggest that CS-MTPITC-α-CD film is a prospective packaging candidate for delaying the quality deterioration of chicken meat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA