Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Water Environ Res ; 96(7): e11076, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965745

RESUMEN

Knowledge on natural background levels (NBLs) of aluminum (Al) in groundwater can accurately assess groundwater Al contamination at a regional scale. However, it has received little attention. This study used a combination of preselection and statistic methods consisting of the oxidation capacity and the boxplot iteration methods to evaluate the NBL of shallow groundwater Al in four groundwater units of the Pearl River Delta (PRD) via eliminating anthropogenic-impacted groundwaters and to discuss driving factors controlling high NBLs of Al in groundwater in this area. A total of 280 water samples were collected, and 18 physico-chemical parameters including Redox potential, dissolved oxygen, pH, total dissolved solids, HCO3 -, NH4 +, NO3 -, SO4 2-, Cl-, NO2 -, F-, K+, Na+, Ca2+, Mg2+, Fe, Mn, and Al were analyzed. Results showed that groundwater Al NBLs in groundwater units A-D were 0.11, 0.16, 0.15, and 0.08 mg/L, respectively. The used method in this study is acceptable for the assessment of groundwater Al NBLs in the PRD, because groundwater Al concentrations in various groundwater units in residual datasets were independent of land-use types, but they were opposite in the original datasets. The dissolution of Al-rich minerals in sediments/rocks was the major source for groundwater Al NBLs in the PRD, and the interaction with Al-rich river water was secondary one. The high groundwater Al NBL in groundwater unit B was mainly attributed to the acid precipitation and the organic matter mineralization inducing the release of Al in Quaternary sediments. By contrast, the high groundwater Al NBL in groundwater unit C mainly was ascribed to the release of Al complexes such as fluoroaluminate from rocks/soils into groundwater induced by acid precipitation, but it was limited by the dissolution of Mg minerals (e.g., dolomite) in aquifers. This study provides not only useful groundwater Al NBLs for the evaluation of groundwater Al contamination but also a reference for understanding the natural geochemical factors controlling groundwater Al in urbanized deltas such as the PRD. PRACTITIONER POINTS: The natural background level (NBL) of groundwater aluminum in the Pearl River Delta (PRD) was evaluated. The dissolution of aluminum-rich minerals in sediments/rocks was the major source for groundwater aluminum NBLs in the PRD. The acid precipitation and organic matter mineralization contribute to high groundwater Al NBL in the groundwater unit B. The acid precipitation contributes to high groundwater Al NBL in the groundwater unit C, while dissolution of magnesium minerals limits it.


Asunto(s)
Aluminio , Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Agua Subterránea/análisis , Aluminio/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Ríos/química , China , Urbanización
2.
Environ Res ; 235: 116653, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451578

RESUMEN

Antibiotics in groundwater have received widespread concern because high levels of them harm aquatic ecosystems and human health. This study aims to investigate the concentration, distribution, ecological and human health risks as well as potential sources of antibiotics in groundwater in the Hutuo River alluvial-pluvial fan, North China Plain. A total of 84 groundwater samples and nine surface water samples were collected, and 35 antibiotics were analyzed using ultra-performance liquid chromatography-tandem mass spectrometry. The results indicated that 12 antibiotics were detected in surface water with the total concentrations ranging from 5.33 ng/L to 64.73 ng/L. Macrolides were the primary category of antibiotics with a detection frequency of 77.8% (mean concentration: 9.14 ng/L). By contrast, in shallow granular aquifers (<150 m), 23 antibiotics were detected and the total concentrations of them ranged from below the method detection limit to 465.26 ng/L (detection frequency: 39.7%). Quinolones were the largest contributor of antibiotics with detection frequency and mean concentration of 32.1% and 12.66 ng/L, respectively. And ciprofloxacin and ofloxacin were the two preponderant individual antibiotics. The mean concentration of groundwater antibiotics in peri-urban areas was approximately 1.7-4.9 times that in other land use types. Livestock manure was the predominant source of antibiotics in groundwater. Erythromycin, sulfametoxydiazine, ofloxacin, and cinoxacin exhibited medium ecological risks to aquatic organisms. All antibiotics posed no risks to human health. The findings of this study provide valuable insights into the occurrence and management of antibiotic contamination in the groundwater in the Hutuo River alluvial-pluvial fan.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Antibacterianos/análisis , Monitoreo del Ambiente/métodos , Ecosistema , Contaminantes Químicos del Agua/análisis , Ríos/química , Agua , Ofloxacino/análisis , China , Agua Subterránea/química , Medición de Riesgo
3.
J Contam Hydrol ; 254: 104130, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36603301

RESUMEN

Aluminium(Al)-rich (> 0.2 mg/L) groundwater has received more concerns because of its harmful to human beings. Origins of large-scale occurrence on Al-rich groundwater in urbanized areas such as the Pearl River Delta (PRD) are still little known. The current work was conducted to investigate spatial distribution of Al-rich groundwater in the PRD, and to discuss its origins in various aquifers. For that, 265 groundwater samples and 15 river water samples were collected, and 21 hydrochemical parameters including Al were analyzed by using conventional analytical procedures. The results showed that groundwater Al concentrations were up to 22.64 mg/L, and Al-rich groundwater occurred in 15% of the area occupied by the PRD. Al-rich groundwater in the coastal-alluvial aquifer was about 2 times those in alluvial-proluvial and fissured aquifers, whereas the karst aquifer was absent. In the coastal-alluvial aquifer, Al-rich groundwater in the peri-urban area was 2 or more times those in urbanized and agricultural areas, whereas the remaining area was absent. By contrast, in the alluvial-proluvial aquifer, Al-rich groundwater in the remaining area was 1.5-3.5 times that in other areas; in the fissured aquifer, the distribution of Al-rich groundwater was independent of land-use types. The infiltration of wastewater from township enterprises was main anthropogenic source for Al-rich groundwater in urbanized and peri-urban areas, whereas irrigation of Al-rich river water was the main one in the agricultural area. Naturally dissolution of Al-rich minerals in soils/rocks, triggered by both of pH decrease resulted from nitrification of contaminated ammonium (e.g., sewage leakage, the use of nitrogen fertilizer) and acid deposition, was the main geogenic source for Al-rich groundwater in the PRD. The contribution of anthropogenic sources to Al-rich groundwater in the coastal-alluvial aquifer was more than that in alluvial-proluvial and fissured aquifers, whereas the contribution of geogenic sources was opposite. In conclusion, the discharge of township enterprises wastewater and ammonium-rich sewage, the emission of nitrogen-containing gas, and the use of nitrogen fertilizer should be preferentially limited to decrease the occurrence of Al-rich groundwater in urbanized areas such as the PRD.


Asunto(s)
Compuestos de Amonio , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Ríos , Aluminio , Urbanización , Aguas del Alcantarillado , Aguas Residuales , Fertilizantes , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua , Nitrógeno
4.
Sci Total Environ ; 857(Pt 2): 159527, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270365

RESUMEN

Knowledge on driving forces controlling natural background levels (NBLs) of geogenic contaminants (GCs) in groundwater of coastal urbanized areas are still limited because of complex hydrogeological conditions and anthropogenic activities. This study assesses NBLs of two GCs including arsenic (As) and manganese (Mn) in four groundwater units of the Pearl River Delta (PRD) with large scale urbanization by using a preselection method composed of the chloride/bromide mass ratio versus chloride concentration and the oxidation capacity with the combination of Grubbs' test. More importantly, driving factors controlling NBLs of As/Mn in groundwater of the PRD are discussed. Results showed that groundwater As/Mn concentrations in residual datasets were independent of land-use types, while those in original datasets in different land-use types were distinct because of various human activities, indicating that the used preselection method in this study is valid for NBLs-As/Mn assessment in groundwater of the PRD. NBL-As in coastal-alluvial aquifers was >6 times that in other groundwater units. NBL-Mn in coastal-alluvial aquifers was 1.4 times that in alluvial-proluvial aquifers, and both were >4 times that in other two groundwater units. High NBLs-As/Mn in coastal-alluvial aquifers is mainly attributed to reduction of FeMn oxyhydr(oxides) induced by mineralization of organic matter in Quaternary sediments. Elevated pH also contributes higher NBL-As in coastal-alluvial aquifers. By contrast, higher NBL-Mn in alluvial-proluvial aquifers than in other two groundwater units mainly ascribes to reduction of FeMn oxyhydr(oxides) in Quaternary sediments triggered by irrigation of reducing river waters. In addition, more occurrence of As/Mn-rich sediments and the infiltration of As/Mn-rich river water are also important factors for high NBLs-As/Mn in coastal-alluvial aquifers. This study shows that revealing natural driving factors of GCs-rich groundwater in coastal urbanized areas on the basis of identification of contaminated groundwaters via the used preselection methods is acceptable.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente , Cloruros , Contaminantes Químicos del Agua/análisis , Arsénico/análisis , Manganeso , Óxidos
5.
Artículo en Inglés | MEDLINE | ID: mdl-35329022

RESUMEN

Cadmium (Cd)-contaminated paddy soils are a big concern. However, the effect of irrigation with acid water on the migration and transformation of Cd and the effect of alternating redox conditions caused by intermittent irrigation on Cd aging processes in different depths of paddy soils are unclear. This study revealed Cd fractionation and aging in a Cd-contaminated paddy soil under four irrigation periods with acid water and four drainage periods, by applying a soil columns experiment and a sequential extraction procedure. The results showed that the dynamic changes of soil pH, oxidation reduction potential (ORP), iron (Fe) oxides and dissolved organic carbon (DOC) throughout the intermittent irrigation affected the transformation of Cd fractions. After 32 days, the proportion of exchangeable Cd (F1) to the total Cd decreased with a reduction of 24.4% and 20.1% at the topsoil and the subsoil, respectively. The labile fractions of Cd decreased, and the more immobilizable fractions of Cd increased in the different depths of soils due to the aging process. Additionally, the redistribution of the Fe and Mn oxide-bound Cd (F3) and organic matter and secondary-sulfide-bound Cd (F4) occurred at different depths of soils during the incubation time. Overall, the bioaccessibility of Cd in the subsoil was higher than that in the topsoil, which was likely due to the leaching and accumulation of soluble Cd in the deep soil. In addition, the aging processes in different depths of soils were divided into three stages, which can be mainly described as the transformation of F1 into F3 and F4.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Contaminación Ambiental , Óxidos , Suelo , Contaminantes del Suelo/análisis , Agua
6.
Ecotoxicol Environ Saf ; 191: 110210, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31958624

RESUMEN

Arsenic (As)-contaminated soils occur widely worldwide. In the present study, three low-cost Fe/Al-based materials, including red soil (RS), sponge iron filter (SIF) and Al-based water treatment sludge (WTS), were applied as amendments to remediate As-contaminated soils under anoxic conditions. After 180 d of incubation, the proportion of the sum of nonspecifically absorbed As (F1) and specifically absorbed As (F2) to the total As was reduced by 6%, 52% and 13% with 5% of RS, SIF and WTS addition, respectively, compared to the control soil (31%). The results showed that among the three amendments, SIF was the most effective at decreasing As bioaccessibility in soils. Compared with RS and WTS, SIF intensified the decrease of labile fractions and the increase of unlabile fractions, and the redistribution of the amorphous oxide-bound fraction (F3) and crystalline hydrous oxide-bound fraction (F4) occurred in the SIF-amended soil. Moreover, the As stabilization processes were divided into two stages in the control and RS-amended soil, while the processes were divided into three stages in both SIF- and WTS-treated soil. The As stabilization processes in all treated soils were characterized by the transformation of labile fractions into more immobilizable fractions, except for F4 transforming into F3 in the first stage in SIF-amended soil. Correspondingly, inner-surface complexation and occlusion within Fe/Al hydroxides were the common driving mechanisms for the transformation of As fractions. Therefore, taking into consideration the results of this study, SIF could be a more promising alternative than the other two materials to passivate As in anoxic soils.


Asunto(s)
Aluminio/química , Arsénico/análisis , Hierro/química , Contaminantes del Suelo/análisis , Suelo/química
7.
Environ Sci Pollut Res Int ; 27(1): 190-209, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31838692

RESUMEN

As the most important graphene derivate, graphene oxide (GO) is a high-efficient adsorbent for the removal of heavy metals in aquatic environment due to its abundant oxygen functional groups, enormous specific area, and strong hydrophilia. However, there are some drawbacks, such as easily aggregating and difficult separation, restricting the environmental application of GO. GO is not a suitable adsorbent by itself. Hence, some materials were used to synthesize GO composites, and GO composites are commonly characterized by high adsorption capacity to overcome the above drawbacks. This review discusses five main GO composites-GO-chitosan, GO-alginate, GO-SiO2, NZVI-rGO, and magnetic GO composites-and summarizes the synthesis methods of GO composites and its application for the removal of heavy metals in aquatic environments. The influencing factors, adsorption capacities, and mechanisms related to the removal of heavy metals by GO composites are highlighted. Lastly, the application potentials and challenges of GO composites for aqueous environmental remediation are discussed. Graphical abstract.


Asunto(s)
Restauración y Remediación Ambiental , Grafito/química , Metales Pesados/química , Contaminantes Químicos del Agua/química , Adsorción , Quitosano , Magnetismo , Dióxido de Silicio , Agua
8.
Sci Total Environ ; 701: 134777, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31704411

RESUMEN

High concentration of manganese (Mn) in groundwater is a major concern because of its harmful to human health, and the origin of which in urbanized areas is often complicated. The present study aims to delineate spatial distributions of groundwater Mn in various aquifers and in areas with different urbanization levels in the Pearl River Delta (PRD), and to identify the origins of groundwater Mn in this region. Nearly 400 groundwater samples collected, and 14 chemicals were analyzed. The results show that approximately 20% groundwater in granular aquifers showed elevated-Mn (>0.4 mg/L), and was more than two times of that in fissured aquifers, while that in karst aquifers was absent. The proportions of elevated-Mn groundwater in urbanized areas and peri-urban areas were higher than that in non-urbanized areas. The decomposition of organic matter and reduction of Fe (hydr)oxides in sediments with reducing condition was likely to be the main factor controlling elevated-Mn groundwater in granular aquifers at a regional scale. By contrast, elevated-Mn groundwater in fissured aquifers was likely mainly affected by the urbanization accompanied with the leakage of low-oxygen domestic sewage and the industrialization accompanied by the leakage of industrial wastewater. In addition, Mn-rich surface water was also probably an important source for groundwater Mn in river network areas. Therefore, it is necessary to make a long-term monitoring for groundwater Mn in granular aquifers, especially in urbanized areas and river network areas, because of the high proportion of elevated-Mn.

9.
Environ Sci Pollut Res Int ; 23(5): 4594-601, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26520097

RESUMEN

The present study focused on the influence of temperature variation on the aging mechanisms of arsenic in soils. The results showed that higher temperature aggravated the decrease of more mobilizable fractions and the increase of less mobilizable or immobilizable fractions in soils over time. During the aging process, the redistribution of both carbonate-bound fraction and specifically sorbed and organic-bound fraction in soils occurred at various temperatures, and the higher temperature accelerated the redistribution of specifically sorbed and organic-bound fraction. The aging processes of arsenic in soils at different temperatures were characterized by several stages, and the aging processes were not complete within 180 days. Arsenic bioaccessibility in soils decreased significantly by the aging, and the decrease was intensified by the higher temperature. In terms of arsenic bioaccessibility, higher temperature accelerated the aging process of arsenic in soils remarkably.


Asunto(s)
Arsénico/química , Contaminantes del Suelo/química , Suelo/química , Arsénico/metabolismo , Disponibilidad Biológica , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA