Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Microbiol ; 14: 1182914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560525

RESUMEN

Introduction: Candida albicans is a commensal fungus that colonizes most healthy individuals' skin and mucosal surfaces but can also cause life-threatening invasive infections, particularly in immunocompromised patients. Despite antifungal treatment availability, drug resistance is increasing, and mortality rates remain unacceptably high. Heat shock protein Ssa1, a conserved member of the Hsp70 family in yeast, is a novel invasin that binds to host cell cadherins, induces host cell endocytosis, and enables C. albicans to cause maximal damage to host cells and induces disseminated and oropharyngeal disease. Result: Here we discovered a mouse monoclonal antibody (mAb 13F4) that targeting C. albicans Ssa1 with high affinity (EC50 = 39.78 ng/mL). mAb 13F4 prevented C. albicans from adhering to and invading human epithelial cells, displayed antifungal activity, and synergized with fluconazole in proof of concept in vivo studies. mAb 13F4 significantly prolonged the survival rate of the hematogenous disseminated candidiasis mice to 75%. We constructed a mAb 13F4 three-dimensional structure using homology modeling methods and found that the antigen-binding fragment (Fab) interacts with the Ssa1 N-terminus. Discussion: These results suggest that blocking Ssa1 cell surface function may effectively control invasive C. albicans infections and provide a potential new treatment strategy for invasive fungal infections.

2.
J Infect Dis ; 228(12): 1789-1799, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37335928

RESUMEN

Staphylococcus aureus is a major human pathogen associated with high mortality rates. The extensive use of antibiotics is associated with the rise of drug resistance, and exotoxins are not targeted by antibiotics. Therefore, monoclonal antibody (mAb) therapy has emerged as a promising solution to solve the clinical problems caused by refractory S aureus. Recent research suggests that the synergistic effects of several cytotoxins, including bicomponent toxins, are critical to the pathogenesis of S aureus. By comparing the amino acid sequences, researchers found that α-toxin and bicomponent toxins have high homology. Therefore, we aimed to screen an antibody, designated an all-in-one mAb, that could neutralize α-toxin and bicomponent toxins through hybridoma fusion. We found that this mAb has a significant pharmacodynamic effect within in vivo mouse models and in vitro experiments.


Asunto(s)
Toxinas Bacterianas , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
Front Immunol ; 13: 843684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651617

RESUMEN

Background: Candida albicans infections are particularly prevalent in immunocompromised patients. Even with appropriate treatment with current antifungal drugs, the mortality rate of invasive candidiasis remains high. Many positive results have been achieved in the current vaccine development. There are also issues such as the vaccine's protective effect is not persistent. Considering the functionality and cost of the vaccine, it is important to develop safe and efficient new vaccines with long-term effects. In this paper, an antifungal nanovaccine with Polyethyleneimine (PEI) as adjuvant was constructed, which could elicit more effective and long-term immunity via stimulating B cells to differentiate into long-lived plasma cells. Materials and Methods: Hsp90-CTD is an important target for protective antibodies during disseminated candidiasis. Hsp90-CTD was used as the antigen, then introduced SDS to "charge" the protein and added PEI to form the nanovaccine. Dynamic light scattering and transmission electron microscope were conducted to identify the size distribution, zeta potential, and morphology of nanovaccine. The antibody titers in mice immunized with the nanovaccine were measured by ELISA. The activation and maturation of long-lived plasma cells in bone marrow by nanovaccine were also investigated via flow cytometry. Finally, the kidney of mice infected with Candida albicans was stained with H&E and PAS to evaluate the protective effect of antibody in serum produced by immunized mice. Results: Nanoparticles (NP) formed by Hsp90-CTD and PEI are small, uniform, and stable. NP had an average size of 116.2 nm with a PDI of 0.13. After immunizing mice with the nanovaccine, it was found that the nano-group produced antibodies faster and for a longer time. After 12 months of immunization, mice still had high and low levels of antibodies in their bodies. Results showed that the nanovaccine could promote the differentiation of B cells into long-lived plasma cells and maintain the long-term existence of antibodies in vivo. After immunization, the antibodies in mice could protect the mice infected by C. albicans. Conclusion: As an adjuvant, PEI can promote the differentiation of B cells into long-lived plasma cells to maintain long-term antibodies in vivo. This strategy can be adapted for the future design of vaccines.


Asunto(s)
Polietileneimina , Vacunas , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Animales , Antifúngicos/farmacología , Candida albicans , Candidiasis , Humanos , Ratones
4.
Front Microbiol ; 12: 788442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970244

RESUMEN

Recent decades have seen a significant increase in invasive fungal infections, resulting in unacceptably high mortality rates. Anidulafungin (AN) is the newest echinocandin and appears to have several advantages over existing antifungals. However, its poor water solubility and burdensome route of administration (i.e., repeated, long-term intravenous infusions) have limited its practical use. The objective of this study was to develop anidulafungin-loaded Human Serum Albumin (HSA) nanoparticles (NP) so as to increase both its solubility and antifungal efficacy. HSA was reduced using SDS and DTT, allowing liberation of free thiols to form the intermolecular disulfide network and nanoassembly. Reduced HSA was then added to MES buffer (0.1 M, pH 4.8) and magnetically stirred at 350 rpm and 25°C with AN (m/m 50:1) for 2 h to form nanoparticles (AN NP). We next performed routine antifungal susceptibility testing of Candida strains (n = 31) using Clinical and Laboratory Standards Institute (CLSI) methodologies. Finally, the in vivo efficacy of both AN and AN NP was investigated in a murine model of invasive infection by one of the most common fungal species-C. albicans. The results indicated that our carrier formulations successfully improved the water solubility of AN and encapsulated AN, with the latter having a particle size of 29 ± 1.5 nm with Polymer dispersity index (PDI) equaling 0.173 ± 0.039. In vitro AN NP testing revealed a stronger effect against Candida species (n = 31), with Minimum Inhibitory Concentration (MIC) values 4- to 32-fold lower than AN alone. In mice infected with Candida and having invasive candidiasis, we found that AN NP prolonged survival time (P < 0.005) and reduced fungal burden in kidneys compared to equivalent concentrations of free drug (P < 0.0001). In conclusion, the anidulafungin nanoparticles developed here have the potential to improve drug administration and therapeutic outcomes for individuals suffering from fungal diseases.

5.
Emerg Microbes Infect ; 9(1): 2417-2432, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33115324

RESUMEN

Candida albicans is a common fungal pathogen in humans that colonizes the skin and mucosal surfaces of the majority healthy individuals. How C. albicans disseminates into the bloodstream and causes life-threatening systemic infections in immunocompromised patients remains unclear. Plasminogen system activation can degrade a variety of structural proteins in vivo and is involved in several homeostatic processes. Here, for the first time, we characterized that C. albicans could capture and "subvert" host plasminogen to invade host epithelial cell surface barriers through cell-wall localized Eno1 protein. We found that the "subverted" plasminogen system plays an important role in development of invasive infection caused by C. albicans in mice. Base on this finding, we discovered a mouse monoclonal antibody (mAb) 12D9 targeting C. albicans Eno1, with high affinity to the 254FYKDGKYDL262 motif in α-helices 6, ß-sheet 6 (H6S6) loop and direct blocking activity for C. albicans capture host plasminogen. mAb 12D9 could prevent C. albicans from invading human epithelial and endothelial cells, and displayed antifungal activity and synergistic effect with anidulafungin or fluconazole in proof-of-concept in vivo studies, suggesting that blocking the function of cell surface Eno1 was effective for controlling invasive infection caused by Candida spp. In summary, our study provides the evidence of C. albicans invading host by "subverting" plasminogen system, suggesting a potential novel treatment strategy for invasive fungal infections.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antifúngicos/administración & dosificación , Candida albicans/patogenicidad , Candidemia/prevención & control , Fosfopiruvato Hidratasa/metabolismo , Plasminógeno/metabolismo , Anidulafungina/administración & dosificación , Anidulafungina/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Antifúngicos/farmacología , Células CACO-2 , Candidemia/metabolismo , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/microbiología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Femenino , Fluconazol/administración & dosificación , Fluconazol/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Fosfopiruvato Hidratasa/química , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína
6.
Front Microbiol ; 11: 1648, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765468

RESUMEN

Invasive candidiasis (IC) is one of the leading causes of death among immunocompromised patients. Because of limited effective therapy treatment options, prevention of IC through vaccine is an appealing strategy. However, how to induce the generation of direct candidacidal antibodies in host remains unclear. Gpi7 mutant C. albicans is an avirulent strain that exposes cell wall ß-(1,3)-glucans. Here, we found that vaccination with the gpi7 mutant strain could protect mice against invasive candidiasis caused by C. albicans and non-albicans Candida spp. The protective effects induced by gpi7 mutant relied on long-lived plasma cells (LLPCs) secreting protective antibodies against C. albicans. Clinically, we verified a similar profile of IgG antibodies in the serum samples from patients recovering from IC to those from gpi7 mutant-vaccinated mice. Mechanistically, we found cell wall ß-(1,3)-glucan of gpi7 mutant facilitated Dectin-1 receptor dependent nuclear translocation of non-canonical NF-κB subunit RelB in macrophages and subsequent IL-18 secretion, which primed protective antibodies generation in vivo. Together, our study demonstrate that Dectin-1 engagement could trigger RelB activation to prime IL-18 expression and established a new paradigm for consideration of the link between Dectin-1 mediated innate immune response and adaptive humoral immunity, suggesting a previously unknown active vaccination strategy against Candida spp. infection.

7.
Am J Transl Res ; 11(2): 721-732, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899374

RESUMEN

There are increasing invasive fungal infections associated with non-albicans, which causes mortal infections in immune deficiency population. Candida krusei is a major non-albicans that exhibits intrinsic resistance to fluconazole and makes clinical treatment difficult. Previous studies revealed that C-type lectin receptors (CLRs) Dectin-1 plays critical roles in host defense against C. albicans infections. C. krusei and C. albicans are phylogenetically different although in the same genus. Whether Dectin-1 contributes to host immune response against C. krusei infection is still unknown. In the present study, we explored the potential roles of the Dectin-1 in host defense against C. krusei. We found that Dectin-1 ligand ß-(1,3)-glucan markedly exposed on the cell surface of C. krusei, while ß-(1,3)-glucan of C. albicans is masked. Dectin-1 is required for host myeloid cells recognition, killing of C. krusei, and development of subsequent Th1 and Th17 cell-mediated adaptive immune response. Furthermore, Dectin-1-deficient mice (Dectin-1-/- ) are more susceptible to C. krusei infection. Together, we confirmed the important roles of Dectin-1 in host defense against C. krusei infection, demonstrating a previously unknown mechanism for C. krusei infection. Our study, therefore, provides a further understanding of host immune response against C. krusei.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA