Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 541-552, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095187

RESUMEN

The ocean serves as a repository for various types of artificial nanoparticles. Nanoplastics (NPs) and nano zinc oxide (nZnO), which are frequently employed in personal care products and food packaging materials, are likely simultaneously released and eventually into the ocean with surface runoff. Therefore, their mutual influence and shared destiny in marine environment cannot be ignored. This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions. Results showed that NPs remained dispersed in brine, while nZnO formed homoaggregates. In seawater of 35 practical salinity units (PSU), nZnO formed heteroaggregates with NPs, inhibiting NPs mobility and decreasing the recovered mass percentage (Meff) from 24.52% to 12.65%. In 3.5 PSU brackish water, nZnO did not significantly aggregate with NPs, and thus barely affected their mobility. However, NPs greatly enhanced nZnO transport with Meff increasing from 14.20% to 25.08%, attributed to the carrier effect of higher mobility NPs. Cotransport from brackish water to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU, below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport. This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.


Asunto(s)
Aguas Salinas , Salinidad , Agua de Mar , Contaminantes Químicos del Agua , Óxido de Zinc , Óxido de Zinc/química , Agua de Mar/química , Aguas Salinas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Porosidad , Microplásticos , Modelos Químicos , Nanopartículas del Metal/química
2.
Water Res ; 259: 121807, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820728

RESUMEN

This study examined the distinct effects of algae polysaccharides (AP), namely sodium alginate (SA), fucoidan (FU), and laminarin (LA), on the aggregation of nanoplastics (NP) in seawater, as well as their subsequent transport in seawater-saturated sea sand. The pristine 50 nm NP tended to form large aggregates, with an average size of approximately 934.5 ± 11 nm. Recovery of NP from the effluent (Meff) was low, at only 18.2 %, and a ripening effect was observed in the breakthrough curve (BTC). Upon the addition of SA, which contains carboxyl groups, the zeta (ζ)-potential of the NP increased by 2.8 mV. This modest enhancement of electrostatic interaction with NP colloids led to a reduction in the aggregation size of NP to 598.0 ± 27 nm and effectively mitigated the ripening effect observed in the BTC. Furthermore, SA's adherence to the sand surface and the resulting increase in electrostatic repulsion, caused a rise in Meff to 27.5 %. In contrast, the introduction of FU, which contains sulfate ester groups, resulted in a surge in ζ-potential of the NP to -27.7 ± 0.76 mV. The intensified electrostatic repulsion between NP and between NP and sand greatly increased Meff to 45.6 %. Unlike the effects of SA and FU, the addition of LA, a neutral compound, caused a near disappearance of ζ-potential of NP (-3.25 ± 0.68 mV). This change enhanced the steric hindrance effect, resulting in complete stabilization of particles and a blocking effect in the BTC of NP. Quantum chemical simulations supported the significant changes in the electrostatic potential of NP colloids induced by SA, FU and LA. In summary, the presence of AP can induce variability in the mobility of NP in seawater-saturated porous media, depending on the nature of the weak, strong, or non-electrostatic interactions between colloids, which are influenced by the structure and functionalization of the polysaccharides themselves. These findings provide valuable insights into the complex and variable behavior of NP transport in the marine environment.


Asunto(s)
Polisacáridos , Agua de Mar , Polisacáridos/química , Agua de Mar/química , Porosidad , Alginatos/química , Microplásticos/química , Electricidad Estática
3.
Environ Pollut ; 356: 124246, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810676

RESUMEN

Colloidal interactions between clay minerals and microplastics (MPs) in high salinity seawater are crucial for determining MP fate in marine environments. Montmorillonite (MMT) forms thin and pliable films that tightly cover MPs, while the thick and rigid lamellae of kaolinite (KLT) have limited contact with MPs, resulting in unstable bonding. However, a small quantity of small-sized KLT can create relatively stable heteroaggregates by embedding into the interstitial spaces of MPs. Both MMT and KLT colloids can decrease the mobility of MPs in seawater-saturated sea sand, but their breakthrough curves (BTCs) show distinct phenomena of "blocking" and "ripening", respectively. The "blocking" phenomenon occurs when flexible MMT adheres to the sand surface, depleting attachment sites quickly and inhibiting the retention of subsequent heteroaggregates of MMT-wrapped MPs. The transport of single MMT also experiences colloid competition for attachment sites, but pre-equilibration experiments reveal no competition between MMT and bare MPs for attachment sites. Instead, the attached MMT provides additional attachment sites for MPs. These results suggest that the wrapping of MPs by MMT plays a dominant role in the "blocking" of cotransport. In contrast, rigid KLT forms a three-dimensional stack on the sand surface, offering more attachment sites for subsequent MPs and heteroaggregates.


Asunto(s)
Bentonita , Arcilla , Microplásticos , Agua de Mar , Contaminantes Químicos del Agua , Microplásticos/química , Arcilla/química , Porosidad , Agua de Mar/química , Bentonita/química , Contaminantes Químicos del Agua/química , Caolín/química , Minerales/química , Coloides/química
4.
Water Res ; 221: 118773, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759847

RESUMEN

The transport of microplastics (MP) or nanoplastics (NP) in porous media has been widely reported. However, their mutual interaction and effect on cotransport remain unclear. Here, we investigated the colloidal interaction between NP (50 nm), submicroplastics (SP, 300 nm), and MP (1000 nm) in seawater and their cotransport in saturated natural sea sands. In the single-component suspension, the recovered mass percentage (Meff) of colloids was as follows: MP (47.81%) > NP (24.18%) > SP (21.66%). SP and MP remained monodispersed. MP had the highest mobility due to the strongest electrostatic repulsion with sand surface, whereas NP formed homoaggregates and was characterized by ripening phenomena. In the SP-MP mixture, SP and MP kept independent mobility without mutual effect. In the NP-SP-MP mixture, the Meff of MP was reduced by 10% because unstable NP induced MP to form heteroaggregates with SP, which could not pass through the pores. In addition, NP attached to the sand surface could form additional retention sites to retain MP. By contrast, SP showed a 13% increase in Meff because MP became an indirect carrier of SP through the bridging of NP. Overall, this study demonstrates the dominant role of unstable NP in the cotransport of NP-SP-MP in the marine sedimentary environment.


Asunto(s)
Microplásticos , Plásticos , Porosidad , Arena , Agua de Mar
5.
J Hazard Mater ; 434: 128912, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35452988

RESUMEN

This study explored the influence of fibrous and filmy polyethylene terephthalate (PET) on the transportation of nanoplastics (NPs) in saturated porous media. With the strong electrostatic repulsion, the negatively charged PET fibers (-57.5 mV) improved the transport of NPs, and the mass percentage of NPs recovered from the effluent (Meff) increased from 69.3% to 86.7%. However, PET films (-49.7 mV) showed the opposite result, that is, Meff decreased from 69.3% to 57.0%. X-ray micro-computed tomography quantitatively revealed the change in effective porosity of porous media before and after adding various PET MPs. The addition of 10 mm fiber increased the porosity from 0.39 to 0.43, whereas the addition of 10 × 10 mm2 film reduced the porosity from 0.39 to 0.29. The fiber-facilitated transport of NPs is presumably due to the formation of new connected pores between fibers and sand grains, whereas the film-inhibited transport of NPs may be due to the partial truncation of transport path of NPs. Overall, the effect of coexisting MPs on the mobility of NPs strongly relies on the shape and size of MPs.


Asunto(s)
Microplásticos , Plásticos , Porosidad , Arena , Microtomografía por Rayos X
6.
Water Res ; 182: 115978, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32622130

RESUMEN

The offshore aquaculture environment is a potential water area with high concentrations of tiny plastics and feeding proteins. In this study, the negatively charged bovine serum albumin (BSA) and the positively charged lysozyme (LSZ) were used to explore the effects of protein corona on the aggregation, transport, and retention of polystyrene nanoplastics (NPs; 200, 500, and 1000 nm) in sea sand saturated with seawater of 35 practical salinity units (PSU). The BSA corona, which was formed by the adsorption of BSA on the surface of NPs, drove the dispersion of NPs (200 and 500 nm) due dominantly to the induced colloidal steric hindrance. For example, the aggregate sizes of 500 nm NP decreased from 1740 ± 87 nm to 765 ± 8 nm at 40 min, which resulted in the enhanced transportation of NP. The calculated interaction energies indicated the BSA corona-induced high energy barriers (>104 KBT) between 1000 nm NPs and sand surface, demonstrating the BSA-enhanced transport of 1000 nm NPs. The mass percentage recovered from the effluent (Meff) increased from 33.4% to 61.7%. Inversely, the LSZ corona triggered the aggregation of 200 nm NPs into the large aggregates via electrostatic adsorption and bridging effect, thereby inhibiting the transport of 200 nm NPs. Nevertheless, no LSZ corona was formed on the surface of 500 and 1000 nm NPs due to extremely low protein adsorption. Accordingly, LSZ cannot affect the stability and transport of these NPs. In the diluted seawater (3.5 PSU), the strong electrostatic attraction between positively charged LSZ and 500 nm NPs significantly increased and the LSZ corona formed, which induced the aggregation of 500 nm NPs. The Meff of NPs therefore decreased from 53.1% to 11.2%. Overall, the protein corona-mediated transport of NPs in seawater-saturated porous media depends on protein type, NP size, and seawater salinity.


Asunto(s)
Nanopartículas , Corona de Proteínas , Microplásticos , Poliestirenos , Porosidad , Agua de Mar
7.
ACS Nano ; 14(7): 7920-7926, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32441911

RESUMEN

Nanoplastics (NPs), mainly originated from weathering of microplastics, are ubiquitous throughout the world. However, the environmentally released NPs are still under debate due to the lack of direct proof for the chemical identification of individual nanoparticles. Here, we show an observational evidence of release of heterogeneous NPs from recycled PVC powders (RPP) using a nondestructive analytical method, namely, correlative Raman imaging and scanning electron (RISE) microscopy. The technology achieves direct chemical identification of individual nanoparticles on RPP surface that are as small as 360 nm including nano-PVC and nano-CaCO3 in complexes with pigments. After washing and filtering through a 1 µm poly(ether sulfone) filter, we clearly distinguish nano-PVC from the other components in an air-dried filtrate. Furthermore, the automated 2D mapping of RISE enables the acquisition of the 2D chemical information on a selected area (e.g., 5 µm × 5 µm) and the display of the different components of nanoparticle aggregates without colloidal separation. Our findings give direct evidence and detailed insights in the potential release of nanoplastics from the recycled plastic products. The RISE method will help us intuitively understand the origin, occurrence, and fate of NPs in the environment.

8.
Chemosphere ; 229: 602-610, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31100631

RESUMEN

The degradation rates and kinetics of one commonly used iodinated contrast medium, iohexol, were investigated and compared during ultraviolet (UV) photolysis, UV/H2O2 and UV/S2O82- advanced oxidation processes (AOPs). Results indicate that the iohexol degradation rate increased in the order of UV/H2O2 < UV irradiation < UV/S2O82- and followed pseudo-first-order kinetics. Increasing persulfate concentration significantly increased iohexol degradation rate, whereas increasing H2O2 concentration caused reverse effect. Radical scavenging test results show that UV photolysis, OH and radicals all contributed to iohexol degradation during UV/S2O82-, but OH was the main contributor during UV/H2O2 and was consumed by excess H2O2. The kinetic models of iohexol degradation by both AOPs were developed, and the reaction rate constants with OH and were calculated as 5.73 (±0.02) × 108 and 3.91 (±0.01) × 1010 M-1 s-1, respectively. Iohexol degradation rate remained stable at pH 5-9 during UV irradiation and UV/H2O2, but gradually decreased at pH 5-7 and remained stable at pH 7-9 during UV/S2O82-. The presence of anions displayed inhibitory effects on iohexol degradation during UV/S2O82- in the order of Cl- >HCO3- ≫ SO42-. UV/S2O82- AOP exhibited high degradation efficiency and stability on the basis of UV irradiation, which can be applied as a promising degradation method for iohexol. UV/S2O82- AOP can effectively mineralize iohexol to CO2 but promoted the generation of toxic iodoform (CHI3), and the subsequent chlorination had the potential to reduce the content of disinfection by-products; therefore, further evaluation of possible environmental hazards is warranted.


Asunto(s)
Peróxido de Hidrógeno/química , Yohexol/química , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Fotólisis , Sulfatos/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA