Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(8): 4497-4506, 2023 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-37694644

RESUMEN

The effects of coconut fiber biochar (CFB) and nitrate-modified coconut fiber biochar (NCFB) on the passivation of exogenous lead (Pb) in paddy soils and their underlying mechanisms were investigated using soil incubation experiments combined with spectroscopic techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), synchrotron radiation X-ray fluorescence (SRXRF), and Fourier transform infrared absorption spectroscopy (FTIR). The effects of NCFB and CFB on the passivation of exogenous lead (Pb) in paddy soils and its underlying mechanisms were investigated. Compared with that of CFB, the inner wall of NCFB honeycomb pores was rougher, and the amount of alcohol-phenol-ether functional groups containing the C-O structure and the amount of carboxyl groups containing the C[FY=,1]O/O[FY=,1]C-O structure on the surface of CFB was significantly decreased after nitric acid modification. Compared with that in the control (without biochar) paddy soil after 150 d of incubation, the EDTA-extracted Pb content in the paddy soil with CFB and NCFB was reduced by 39.7% and 105.4%, respectively. The carbonate-bound and Fe-Mn oxide-bound Pb contents were significantly lower, and the organic-bound and residue Pb contents were significantly higher in the NCFB-added soil. The SRXRF scans showed that the exogenous Pb was enriched in the microregions of CFB particles rich in Ca and Cu elements and relatively less so in the microregions of soil aggregates rich in the Fe, Mn, and Ti elements. In addition, the characteristic peaks of carboxylates (1384 cm-1) in A-CFBPb and A-NCFBPb were significantly enhanced in the incubation experiment in the presence of exogenous Pb compared to A-CFB and A-NCFB in the absence of exogenous Pb. The addition of CFB or NCFB was more effective in passivating exogenous Pb in paddy soils and promoted the gradual transformation of Pb from unstable to more stable forms in paddy soils to achieve the effect of passivating Pb. The greater amount of carboxyl functional groups in NCFB participated in the passivation of exogenous Pb, which made NCFB more effective than CFB in passivating Pb. NCFB was more effective than CFB in passivating exogenous Pb in paddy soils due to its rougher inner walls of honeycomb pores and abundant carboxyl functional groups. In tropical areas such as Hainan, coconut fiber biochar and its modification can be considered as an environmentally friendly candidate method for the remediation of soil Pb contamination.


Asunto(s)
Cocos , Nitratos , Plomo , Ácido Nítrico
2.
Science ; 381(6665): 1468-1474, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769102

RESUMEN

3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures. Colloidal nanocrystals are used as building blocks and photochemically bonded through their native ligands. Without resins, this bonding process produces arbitrary three-dimensional (3D) structures with a large inorganic mass fraction (~90%) and high mechanical strength. The printed materials preserve the intrinsic properties of constituent nanocrystals and create structure-dictated functionalities, such as the broadband chiroptical responses with an anisotropic factor of ~0.24 for semiconducting cadmium chalcogenide nanohelical arrays.

3.
Science ; 377(6610): 1112-1116, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36048954

RESUMEN

Three-dimensional (3D) laser nanoprinting allows maskless manufacturing of diverse nanostructures with nanoscale resolution. However, 3D manufacturing of inorganic nanostructures typically requires nanomaterial-polymer composites and is limited by a photopolymerization mechanism, resulting in a reduction of material purity and degradation of intrinsic properties. We developed a polymerization-independent, laser direct writing technique called photoexcitation-induced chemical bonding. Without any additives, the holes excited inside semiconductor quantum dots are transferred to the nanocrystal surface and improve their chemical reactivity, leading to interparticle chemical bonding. As a proof of concept, we printed arbitrary 3D quantum dot architectures at a resolution beyond the diffraction limit. Our strategy will enable the manufacturing of free-form quantum dot optoelectronic devices such as light-emitting devices or photodetectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA