Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865282

RESUMEN

As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.

2.
J Am Chem Soc ; 143(32): 12600-12608, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34288654

RESUMEN

The kinetics of electrode reactions including mass transfer and surface reaction is essential in electrocatalysis, as it strongly determines the apparent reaction rates, especially on nanostructured electrocatalysts. However, important challenges still remain in optimizing the kinetics of given catalysts with suitable constituents, morphology, and crystalline design to maximize the electrocatalytic performances. We propose a comprehensive kinetic model coupling mass transfer and surface reaction on the nanocatalyst-modified electrode surface to explore and shed light on the kinetic optimization in electrocatalysis. Moreover, a theory-guided microchemical engineering (MCE) strategy has been demonstrated to rationally redesign the catalysts with optimized kinetics. Experimental measurements for methanol oxidation reaction in a 3D ordered channel with tunable channel sizes confirm the calculation prediction. Under the optimized channel size, mass transfer and surface reaction in the channeled microreactor are both well regulated. This MCE strategy will bring about a significant leap forward in structured catalyst design and kinetic modulation.

3.
Nano Lett ; 20(4): 2763-2769, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32125868

RESUMEN

Developing efficient charge separation strategies is essential to achieve high-power conversion efficiency in the fields of chemistry, biology, and material science. Herein, we develop a facile strategy for fabrication of unique wafer-scale radial nanowire assemblies by exploiting shear force in rotary solution. The assembly mechanism can be well revealed by the large-scale stochastic dynamics simulation. Free electrons can be rapidly generated to produce quantitatively tunable current output when the radial nanowire assemblies rotate under the magnetic field. Moreover, the photoconductive performance of the radial semiconductor nanowire assemblies can be remarkably enhanced as the electron-hole recombination was retrained by the efficient charge separation under the rotating magnetic field. Such large-scale unique nanowire assemblies will facilitate the design of an efficient charge separation process in biosystem, sensors, and photocatalysis.


Asunto(s)
Nanocables/química , Semiconductores , Conductividad Eléctrica , Electrones , Diseño de Equipo , Campos Magnéticos , Procesos Estocásticos
4.
J Am Chem Soc ; 141(27): 10729-10735, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31246444

RESUMEN

Designing high-efficiency catalyst is at the heart of a transition to future renewable energy systems. Great achievements have been made to optimize thermodynamics to reduce energetic barriers of the catalytic reactions. However, little attention has been paid to design catalysts to improve kinetics to enrich the local concentration of reactant molecules surrounding electrocatalysts. Here, we find that well-designed nanocatalysts with periodic structures can optimize kinetics to accelerate mass-transport from bulk electrolyte to the catalyst surface, leading to the enhanced catalytic performance. This achievement stems from regulation of the surface reactant flux due to the gradient of the microelectric field directing uniformly to the nearest catalyst on ordered pattern, so that all of the reactant molecules are utilized sufficiently for reactions, enabling the boost of the electrocatalytic performance. This novel concept is further confirmed in various catalytic systems and nanoassemblies, such as nanoparticles, nanorods, and nanoflakes.

5.
Angew Chem Int Ed Engl ; 57(27): 8130-8134, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29750852

RESUMEN

Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA