Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
RSC Adv ; 14(26): 18355-18366, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38854836

RESUMEN

The high efficiency electrocatalytic degradation of late landfill leachate is still not an easy task due to the complexity and variability of organic pollutants. A chemical coating strategy for assembling a boron-doped diamond anode (BDD) towards electrocatalytic degradation of late landfill leachate was adopted and studied. The results shows the high removal rates of organic carbon (TOC) and ammonia nitrogen (NH3-N) after electrochemical oxidation for 5 h can reach 99% and 100%. Further, the organic migration and transformation depends on current density, A/V value, initial pH, electrochemical degradation time, and composition of the stock solution. Specifically, alkaline conditions can increase both TOC and NH3-N removal rates, which is reflected in the NH3-N removal rate of 100% when the pH is 8.5 after only 5 h. The types of organic matter decreased from 63 species to 24 species in 5 h, in which the removal of fulvic acids is superior to that of soluble biometabolites. Amides/olefins and phenolic alcohols are all degraded and converted into other substances or decomposed into CO2 and H2O by BDD, accompanied by the continuous decomposition of alcohol-phenols into alkanes. In all, this study provides a core reference on electrocatalytic degradation of late landfill leachate.

2.
Mycology ; 15(1): 91-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558843

RESUMEN

Although rare, trans-kingdom infection features an interesting infection biology concept, in which highly versatile pathogenic attributes allow successful infections in evolutionarily highly divergent species. Corynespora cassiicola is a phytopathogenic fungus and occasionally causes human infections. Herein, we report a phaeohyphomycosis case caused by C. cassiicola. Given that sporadic reports may contribute to a lack of awareness of the transmission route, clinical manifestations, and diagnostic and clinical management, we systematically reviewed the cases reported thus far. Nine patients were identified and included in the pooled analysis, 88.9% (8/9) of whom were reported after 2010. All patients were from Asian, African, and Latin American countries, among whom 77.8% (7/9) were farmers or lived in areas with active agriculture. Exposed body parts were the major affected infection area, and clinical manifestations were mainly non-specific inflammatory reactions. Although biochemical and morphological examinations confirmed the presence of fungal infection, molecular analysis was used for the final diagnosis, with 77.8% (7/9) being identified by internal transcribed spacer sequencing. Whereas voriconazole, terbinafine, and AmB, either alone or in combination, resulted in successful infection resolution in most cases (5/9; 55.5%), those suffering from invasive facial infections and CARD9 deficiency showed poor outcomes. Our patient is the third case of invasive facial infection caused by C. cassiicola and was successfully treated with intravenous LAmB followed by oral voriconazole combined with topical antifungal irrigation. Molecular identification of fungus and prompt antifungal treatment is pivotal in the clinical success of patients suspected to have phaeohyphomycosis. Moreover, as evidenced by our data, itraconazole treatment is not recommended.

3.
Int J Biol Macromol ; 256(Pt 1): 128365, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000615

RESUMEN

The collection and storage of renewable, sustainable and clean energy including wind, solar, and tidal energy has attracted considerable attention because of its promising potential to replace fossil energy sources. Advanced energy-storage materials are the core component for energy harvesters, affording the high-efficiency conversion of these new-style energy sources. Herein, originated from nature, a series of all-wood-derived carbon-assisted phase change materials (PCMs) were purposed by incorporating carbon dots-modified polyethylene glycol matrix into carbon skeletons via a vacuum-impregnation strategy. The resultant PCMs possessed desired anti-leakage capability and superior thermophysical behaviors. In particular, the optimum sample posed high latent heat (131.5 J/g) and well thermal stability, where the corresponding enthalpy still reserved 90 % over 100 heating/cooling cycles. More importantly, the as-fabricated thermal-energy harvester presented prominent capability to strorage and release multiple forms of thermal energy, as well as high-efficiency solar-energy utilization, corresponding to a photothermal conversion efficiency of 88 % in simulated sunlight irradiation, far exceeding some reported PCMs. Overall, with the introduction of wood-derived carbon dots and carbon skeletons, the assembled all-wood-derived carbon-assisted PCMs afforded trinity advantages on thermal performance, cycling stability, and energy conversion efficiency, which provide a promising potential for the practical application in thermal-energy harvesters.


Asunto(s)
Calor , Madera , Carbono , Frío , Fuentes Generadoras de Energía
4.
RSC Adv ; 13(47): 33096-33106, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37954423

RESUMEN

Reversible thermochromism presents depth at low temperatures and brightness at high temperatures, which is not conducive to the application of the passive energy-saving and shading effect. Here, we propose an innovative strategy for unconventional reversible thermochromic energy-storage flexible wood films (FT-PCMs-2) by the contribution of polyvinyl alcohol/propylene glycol (PVA/PG). Upon heating, the FT-PCMs-2 changes from light red/green to dark red/green, in contrast to the color change of the non-flexible composites without PVA/PG. The FT-PCMs-2 has good flexibility, mechanical strength and thermal stability. Among them, MSR-DEW-6PVA and MSG-DEW-6PVA have better comprehensive properties, including suitable phase change temperatures (38.6 °C and 37.2 °C), high latent heat values (59.79 J g-1 and 73.02 J g-1), and low supercooling degrees (2 °C and 0.6 °C). FTIR, XRD and SEM analysis show that the binary fatty acid eutectics were successfully loaded into the eucalyptus fibre skeleton with physical interaction with PVA/PG. In addition, MSR-DEW-6PVA and MSG-DEW-6PVA have photothermal conversion rates of 48.3% and 36%, good cycling stability and anti-leakage performance after 50 cycles, and have promising applications in the fields of building energy saving, intelligent windows and decoration.

5.
World J Diabetes ; 14(9): 1369-1384, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37771334

RESUMEN

BACKGROUND: Diabetic skin ulcers, a significant global healthcare burden, are mainly caused by the inhibition of cell proliferation and impaired angiogenesis. XB130 is an adaptor protein that regulates cell proliferation and migration. However, the role of XB130 in the development of diabetic skin ulcers remains unclear. AIM: To investigate whether XB130 can regulate the inhibition of proliferation and vascular damage induced by high glucose. Additionally, we aim to determine whether XB130 is involved in the healing process of diabetic skin ulcers, along with its molecular mechanisms. METHODS: We conducted RNA-sequencing analysis to identify the key genes involved in diabetic skin ulcers. We investigated the effects of XB130 on wound healing using histological analyses. In addition, we used reverse transcription-quantitative polymerase chain reaction, Western blot, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, immunofluorescence, wound healing, and tubule formation experiments to investigate their effects on cellular processes in human umbilical vein endothelial cells (HUVECs) stimulated with high glucose. Finally, we performed functional analysis to elucidate the molecular mechanisms underlying diabetic skin ulcers. RESULTS: RNA-sequencing analysis showed that the expression of XB130 was up-regulated in the tissues of diabetic skin ulcers. Knockdown of XB130 promoted the healing of skin wounds in mice, leading to an accelerated wound healing process and shortened wound healing time. At the cellular level, knockdown of XB130 alleviated high glucose-induced inhibition of cell proliferation and angiogenic impairment in HUVECs. Inhibition of the PI3K/Akt pathway removed the proliferative effects and endothelial protection mediated by XB130. CONCLUSION: The findings of this study indicated that the expression of XB130 is up-regulated in high glucose-stimulated diabetic skin ulcers and HUVECs. Knockdown of XB130 promotes cell proliferation and angiogenesis via the PI3K/Akt signalling pathway, which accelerates the healing of diabetic skin ulcers.

6.
Chemosphere ; 327: 138512, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36972876

RESUMEN

Progress toward the high water flux of cellulose acetate butyrate (CAB)-based reverse osmosis (RO) membrane is a bottleneck for desalination and mitigation of fresh water shortage. Here, we develop an "optimization of formulation-induced structure" strategy using acetone (solvent), triethyl phosphate (pore-inducing agent), glycerin and n-propanol (boosters), which achieves a state-of-the-art salt rejection of 97.1% and permeate flux of 8.73 L m-2·h-1, ranking top among CAB-based RO membrane. Compared with reported literatures, it represents high separation performance for different concentrations (20-100 mg L-1) of Rhodamine B and Congo red, different ion types (NaCl and MgCl2), different time (600 min), and resistance to feed pressure changes. The key is the appropriate viscosity of the casting solution (995.52 mPa s), the synergy between the components and additives, contributing to the formation of "jellyfish"-like microscopic pore structure with the lowest surface roughness (Ra = 16.3) and good hydrophilicity. The proposed correlation mechanism between additive-optimized micro-structure and desalination provides a promising prospect for CAB-based RO membrane.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Ósmosis , Purificación del Agua/métodos , Cloruro de Sodio , Butiratos
7.
RSC Adv ; 13(11): 7267-7279, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36891495

RESUMEN

P25/PBP (TiO2, anthocyanins) prepared by combining PBP (blueberry peels) with P25, and N-doped porous carbon-supported Ni nanoparticles (Ni@NPC-X) prepared using blueberry-derived carbon were used for the application as photoanode and the counter electrode, respectively, in dye-sensitized solar cells (DSSCs) to create a new perspective for blueberry-based photo-powered energy systems. PBP was introduced into the P25 photoanode and carbonized to form a C-like structure after annealing that improved its adsorption capacity for N719 dye, contributing a 17.3% higher power conversion efficiency (PCE) of P25/PBP-Pt (5.82%) than that of P25-Pt (4.96%). The structure of the porous carbon changes from a flat surface to a petal-like structure due to the N doping by melamine, and the specific surface area increases. N-doped three-dimensional porous carbon supported the loading and reduced the agglomeration of Ni nanoparticles, reducing the charge transfer resistance, and providing a fast electron transfer path. The doping of Ni and N on the porous carbon worked synergistically to enhance the electrocatalytic activity of the Ni@NPC-X electrode. The PCE of the DSSCs assembled by Ni@NPC-1.5 and P25/PBP was 4.86%. Also, the Ni@NPC-1.5 electrode exhibited 116.12 F g-1 and a capacitance retention rate of 98.2% (10 000 cycles), further confirming good electrocatalysis and cycle stability.

8.
Dis Markers ; 2023: 8101837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741909

RESUMEN

Background: The skin cutaneous melanoma (SKCM) is a devastating form of skin cancer triggered by genetic and environmental factors, and the incidence of SKCM has rapidly increased in recent years. Immune infiltration of the tumor microenvironment is positively associated with overall survival in many tumors. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily and a crucial signaling hub for multiple pathological pathways that mediate immunity. Although numerous evidences suggest a crucial role for TREM2 in tumorigenesis of some tumors, no systematic SKCM analysis of TREM2 is available. Mehods. The relationship between TREM2 expression and diagnostic and prognostic value of SKCM patients via using The Cancer Genome Atlas (TCGA) data. The expression level of TREM2 and clinical characteristic correlation in SKCM patients were assessed by the Wilcoxon rank sum test. The cox regression methods, Kaplan-Meier (KM), and log-rank test were used to assess the impact of TREM2 expression on the overall survival (OS). Furthermore, the Gene Set Enrichment Analysis (GSEA) and TIMER were performed to evaluate the enrichment pathways and potential functions and quantify the immune cell infiltration level for TREM2 expression. Results: The TREM2 in SKCM sample expression levels was significantly higher than in normal tissues. Moreover, this expression level of TREM2 was also associated with the BMI of SKCM patients. KM overall survival analysis and OS curve displayed that a high-level TREM2 expression was significantly correlated with a better SKCM prognosis of patients as compared with a low level of TREM2 expression. The GSEA analysis also revealed that TREM2 was associated with immune functions, such as neutrophil activation. Conclusion: TREM2 played a crucial role in SKCM, which might be a prognostic biomarker and correlated with immune infifiltrates in SKCM patients.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Pronóstico , Biomarcadores , Microambiente Tumoral , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Melanoma Cutáneo Maligno
9.
Front Microbiol ; 13: 1031388, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312927

RESUMEN

Trichophyton is the most pathogenic type of fungal skin infection. It often invades and grows in a keratin-rich matrix, and lesions include human skin, hair, and fingernails (toenails). We designed LAMP primers for Trichophyton and developed a LAMP-Microfluidic chip detection system for Trichophyton. This system detects six common species of Trichophyton in the genus Trichophyton, including Trichophyton rubrum, Trichophyton mentagrophyte, Trichophyton violaceum, Trichophyton tonsurans, Trichophyton verrucosum, and Trichophyton schoenleinii. The specificity reached 100%, and the sensitivity could reach about 1 × 102 copies/µl. The entire detection process can be completed within 60 min and does not cross-react with other dermatophytes. The established LAMP-Microfluidic chip detection system has the advantages of simple operation, high specificity, and high sensitivity, and has the potential for clinical application.

10.
Langmuir ; 38(21): 6539-6549, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35584369

RESUMEN

The cellulose-based polydopamine modified separator (LID-PDA) and polydopamine/graphene/polypyrrole modified electrode (LID-PDA-GR/PPy) were successfully fabricated by dissolving-regenerating and phase-inversion methods via dopamine polymerization and doping modification of graphene (GR) and polypyrrole (PPy) in a lithium chloride/N,N-dimethylacetamide solvent system. The structure and physical properties of the LID-PDA film material play a positive role in its application in supercapacitor separators and electrodes. The effect of PPy content on the electrochemical performance of the electrode shows that the LID-PDA-GR/PPy-30 electrode has the best performance (2.2 Ω, 237.2 F/g at 0.5 A/g). The cellulose-based supercapacitor assembled from the LID-PDA-GR/PPy-30 electrode and LID-PDA separator shows good electrochemical energy storage properties (439.0 F/g at 0.2 A/g, 36.2 Wh/kg corresponding to 2.2 kW/kg). Based on the microstructural properties of natural and renewable cellulose substrates, combining polymerization and doping to realize the complementarity between materials is meaningful for the application and development of energy storage materials.


Asunto(s)
Grafito , Polímeros , Celulosa , Electrodos , Grafito/química , Indoles , Polimerizacion , Polímeros/química , Pirroles/química
11.
Polymers (Basel) ; 14(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335402

RESUMEN

There is increasing interest in furfurylated wood, but the polymerization mechanism between its internal polyfurfuryl alcohol (PFA) and lignin is still uncertain. This paper investigated the distribution of PFA and the feasibility of the polymerization of PFA with lignin in furfurylated balsa wood. The wood first immersed in the furfuryl alcohol (FA) solution followed by in situ polymerization and the distribution of PFA was characterized by Raman, fluorescence microscopy, SEM, and CLSM. Then, the mill wood lignin (MWL) of balsa wood and lignin model molecules were catalytically polymerized with PFA, respectively, studying the mechanism of interaction between PFA and lignin. It was concluded that PFA was mainly deposited in cell corner with high lignin concentration, and additionally partly deposited in wood cell cavity due to high concentration of FA and partial delignification. TGA, FTIR, and NMR analysis showed that the cross-linked network structure generated by the substitution of MWL aromatic ring free position by PFA hydroxymethyl enhanced the thermal stability. New chemical shifts were established between PFA and C5/C6 of lignin model A and C2/C6 of model B, respectively. The above results illustrated that lignin-CH2-PFA linkage was created between PFA and lignin in the wood cell wall.

12.
Mycopathologia ; 187(2-3): 169-180, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35157189

RESUMEN

Knowledge about the clinical characteristics and prognostic factors of Talaromyces marneffei infection in children is limited, especially in HIV-positive children. We performed a retrospective study of all HIV-positive pediatric inpatients with T. marneffei infection in a tertiary hospital in Southern China between 2014 and 2019 and analyzed the related risk factors of poor prognosis using logistic regression. Overall, 28 cases were enrolled and the prevalence of talaromycosis in AIDS children was 15.3% (28/183). The median age of the onset was 8 years (range: 1-14 years). The typical manifestation of skin lesion with central umbilication was not common (21.4%). All the children had very low CD4+ cell counts (median 13.5 cells/µL, range: 3-137 cells/µL) on admission. 92.9% children were misdiagnosed and talaromycosis was only noted after positivity for HIV infection. 89.3% diagnoses of T. marneffei infections were based on positive blood cultures, with a long culture time (median 7 days, range from 3-14 days). The sensitivity of fungus 1,3-ß-D-glucan assay was 63.2%. Amphotericin B was superior to itraconazole in the induction antifungal therapy of talaromycosis in HIV-positive children. A six-month follow-up revealed a 28.6% mortality. Lower ratio of CD4+/CD8+ and amphotericin B treatment not over 7 days predicted poor prognosis. Our retrospective study provided an overview and update on the current knowledge of talaromycosis in HIV-positive children. Pediatricians in endemic areas should be aware of mycoses to prevent misdiagnosis. 1,3-ß-D-glucan assay did not show optimal sensitivity. Amphotericin B treatment over 7 days can improve poor prognosis.


Asunto(s)
Infecciones por VIH , Micosis , Talaromyces , Adolescente , Anfotericina B/uso terapéutico , Antifúngicos/uso terapéutico , Niño , Preescolar , China/epidemiología , Glucanos/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Humanos , Lactante , Micosis/diagnóstico , Micosis/tratamiento farmacológico , Micosis/epidemiología , Pronóstico , Estudios Retrospectivos
13.
Biomacromolecules ; 23(3): 913-925, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-34967615

RESUMEN

The biomass-based inter-transmission network architecture is expected to act on all-solid-state supercapacitors (ASSSCs) by building excellent conductive paths and achieving high ionic conductivity to promote their development as future electronic devices. Here, biomass-derived hybrid organogel electrodes constructed by incorporating polyaniline (PANI) into cellulose/dealkaline lignin (C/DL) film architectures exhibit an impressive specific capacitance (582 F g-1 at 1 A g-1) due to the effective dispersion and doping of PANI. Moreover, the specific capacitance of the best C/DL-PANI electrode is nearly 19 times higher than that of a cellulose-PANI electrode, which is attributed to the contribution of DL to the pseudocapacitance. ASSSCs assembled using the C/DL-PANI electrodes and the DL gel electrolyte exhibit excellent specific capacitance (344 F g-1 at 1 A g-1), Coulombic efficiency (∼100% for 5000 cycles), cycle stability (85.7% for 5000 cycles at 1 A g-1), and energy density (58.1 W h kg-1 at 0.5 kW kg-1). The ASSSCs showed a comparable or even higher electrochemical performance than the reported PANI-based or biomass-based ASSSCs, which can be due to the conductive network of the biomass-derived electrodes, the migration of ions between the electrodes through the gel electrolyte ion pathway, and the interfacial synergy. This innovative work paves the way for the development of ASSSC applications based on biomass materials.


Asunto(s)
Celulosa , Lignina , Biomasa , Capacidad Eléctrica , Electrodos , Electrólitos
14.
Future Microbiol ; 17: 223-233, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34905957

RESUMEN

Aim: This study aims to provide reliable prognostic factors for patients with cryptococcal meningitis (CM). Patients & methods: Clinical characteristics and laboratory findings of CM patients were retrospectively reviewed. Results: Sixty-three patients with CM were enrolled and 38/63 were confirmed to be HIV serology positive. Among clinical characteristics, headache, nausea and/or vomiting, and fever were the most common symptoms. Among cerebrospinal fluid (CSF) parameters, changes in leukocyte count, lactate dehydrogenase and chloride were significantly associated with the outcome. An increased CSF/serum albumin quotient (QAlb) was indicative of an unfavorable outcome in HIV-negative patients. Conclusion: CSF lactate dehydrogenase and QAlb may improve the prediction of outcomes in patients with CM.


Asunto(s)
Infecciones por VIH , Meningitis Criptocócica , Infecciones por VIH/complicaciones , Hospitales , Humanos , L-Lactato Deshidrogenasa , Meningitis Criptocócica/líquido cefalorraquídeo , Alta del Paciente , Estudios Retrospectivos , Albúmina Sérica
15.
Biomacromolecules ; 22(10): 4155-4168, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34473483

RESUMEN

The collection, storage, and use of energy and information are important issues for overcoming the global energy shortage while satisfying the demand for information transmission. This research reports a nano-Fe3O4 and erythritol (ER)-functionalized, cross-linked methyl cellulose aerogel (MC-EP) composite that has the characteristics of phase-change energy storage as the magnetic and ultraviolet responses requisite for light-to-heat conversion and storage. The nano-Fe3O4 particles in MC-EP-ER-75 were fixed and filled into pore structures in MC-EP. ER was used to form an effective combination with MC-EP. The addition of nano-Fe3O4 compensated for the low thermal conductivity of ER. The MC-EP-ER-75 was able to store solar radiation-induced energy due to the loading of ER at a photothermal conversion efficiency of 79.67% and a light-to-heat conversion efficiency of 79.67%. The results of thermal stability (TGA) analysis showed that MC-EP-ER-75 was thermally degraded acceptably below 200 °C. The differential scanning calorimetry curve and latent heat values (melting/crystallization enthalpies of 314.8 and 197.9 J/g, respectively) of MC-EP-ER-75 did not change after 100 cycles. In addition, it exhibited excellent saturation magnetization, super-paramagnetism, and ultraviolet shielding, as well as a rapid response to the ultraviolet and magnetic fields. This provided a way to prepare light-to-heat conversion-storage-release materials and ultraviolet-magnetic sensors that can be used in renewable resources.


Asunto(s)
Epiclorhidrina , Metilcelulosa , Calor , Fenómenos Magnéticos , Conductividad Térmica
16.
Langmuir ; 37(24): 7513-7526, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34110171

RESUMEN

The development of high-performance shape-stable phase change material composites (SPCMs) with high phase change enthalpy and high conversion efficiency, especially with good photochromic properties, is essential for thermal energy storage. Here, we report that one type of SPCMs with both photochromic and phase change energy storage is obtained by incorporating organic binary composite PCMs (hexadecanol/coconut oil, H/C) and photochromic phosphotungstic acid (PA) into Ochroma pyramidale wood-based cellulose microframe (DOW) through simple vacuum impregnation. When the ratio of hexadecanol to coconut oil is 3:7 and the ratio of phosphotungstic acid to N,N-dimethylacetamide is 4:13.6, the SPCM composite material (DOW-H3C7-4PA) represents a high phase transition enthalpy of 163.7 J/g and an appropriate phase transition temperature of 42.55 °C that can be applied to the environmental temperature adjustment of high-temperature areas (>40 °C) mentioned in this paper, in addition to the excellent thermal stability and photochromic stability; for example, even after 100 thermal cycles and UV radiation cycles, its phase transition enthalpy remains almost unchanged. The DOW-H3C7-4PA composite material also shows good shape stability and leakage resistance. In addition, the high photothermal conversion efficiency (65.71%) of DOW-H3C7-4PA is considered to be a promising candidate for photothermal energy storage applications. Therefore, the manufactured SPCMs (DOW-H3C7-4PA) have high latent heat, good melting/freezing cycle reliability, high photochromic stability, and remarkable light-to-heat energy conversion ability, making them show broad application prospects in energy conversion and storage devices.


Asunto(s)
Celulosa , Madera , Aceite de Coco , Transición de Fase , Reproducibilidad de los Resultados
17.
Int J Biol Macromol ; 184: 538-550, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34175336

RESUMEN

In this study, two kinds of form-stable multifunctional materials with thermal and electrical response (FPCMs: DP-E7U3-CNT, DP-E7T3-CNT) are composed of wood-based honeycomb-like celluloses micro-framework (DP), carbon nanotubes (CNT), erythritol-urea (E7U3) or erythritol-thiourea (E7T3). In FPCMs, DP acts as a skeleton structure to seal E7U3 and E7T3 and provide more pathways for heat conduction. The CNT acts as an extended surface to further improve thermal conductivity. FE-SEM showed that the honeycomb-like pore structure of DP was completely filled with E7U3, E7T3 and CNT. FTIR and XRD analysis show that there is only a combination of physical interactions between the components of FPCMs. DSC curves and thermal conductivity analysis results show that DP-E7U3-1.5CNT and DP-E7T3-1.5CNT with the mass fraction of carbon nanotubes (1.5 wt%) have the highest latent heat values (230.3 J/g, 272.2 J/g) and thermal conductivity (0.9832 W/(m·K), 0.9363 W/(m·K)). Both DP-E7U3-1.5CNT and DP-E7T3-1.5CNT exhibit high latent heat retention and thermal stability after 100 heating-cooling cycles. In addition, DP-E7U3-1.5CNT and DP-E7T3-1.5CNT show excellent performance in light-heat energy conversion-storage, actual latent heat storage and release, thermal and electrical response performance, which make it has great potential to be multifunctional materials with thermal storage sand electrical response.


Asunto(s)
Celulosa/química , Eritritol/química , Tiourea/química , Urea/química , Conductividad Eléctrica , Diseño de Equipo , Ensayo de Materiales , Estructura Molecular , Nanotubos de Carbono/química , Transición de Fase , Conductividad Térmica , Madera/química
18.
BMC Infect Dis ; 21(1): 224, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639846

RESUMEN

BACKGROUND: The clinical profiles and outcomes of cryptococcal meningitis have been shown to vary depending on the underlying condition. The aim of this study was to investigate clinical characteristics and outcomes in patients with and without type II diabetes mellitus. METHODS: A retrospective study was performed. Clinical data of HIV-negative cryptococcal meningitis patients with type II diabetes mellitus (n = 26) and without type II diabetes mellitus (n = 52) referring to the Jiangxi Chest Hospital between January 2012 to December 2018 were analyzed. The data were analyzed using chi square, none-parametric tests, and logistic regression. P-values < 0.05 were considered significant. RESULTS: In this study, cryptococcal meningitis patients suffering from type II diabetes mellitus had a higher mortality (23.08% vs. 7.69%; P = 0.055), and required longer hospitalization (59.58 vs. 42.88 days; P = 0.132). Moreover, cerebrospinal fluid examinations revealed that cryptococcal meningitis patients with type II diabetes mellitus had higher opening pressure (271.54 vs. 234.23 mmH2O; P = 0.125).The results of multivariate regression analysis revealed that cryptococcal meningitis patients with type II diabetes were more often presented with visual disorders (28.54% vs. 11.54%; [95% CI 0.056-0.705]; p = 0.012), and had higher cerebrospinal fluid protein levels (1027.62 ± 594.16 vs. 705.72 ± 373.88 mg/l; [95% CI 1.000-1.002]; p = 0.016). Among patients with type II diabetes mellitus, nausea and vomiting was more frequent at the initial visit in those died (100% vs. 50%; p = 0.027), and 66% of died type II diabetes mellitus patients were poorly controlled blood glucose level, compared with 30% in survival type II diabetes mellitus patients. CONCLUSION: This study suggests that cryptococcal meningitis patients with type II diabetes mellitus differ significantly from cryptococcal meningitis patients without type II diabetes mellitus with respect to clinical symptoms such as visual disorders and cerebrospinal fluid examination. The presence of nausea and vomiting among type II diabetes mellitus patients could have implication in mortality.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Meningitis Criptocócica/diagnóstico , Meningitis Criptocócica/epidemiología , Adulto , Anciano , China/epidemiología , Comorbilidad , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Femenino , Seronegatividad para VIH/fisiología , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Meningitis Criptocócica/complicaciones , Meningitis Criptocócica/terapia , Persona de Mediana Edad , Mortalidad , Pronóstico , Estudios Retrospectivos
19.
Nanotechnology ; 32(9): 095403, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33203815

RESUMEN

The development of a biodegradable cellulose-based separator with excellent performance has been of great research significance and application potential for the green development of supercapacitors. Herein, the regenerated porous cellulose/Polyvinyl alcohol films (CP-10, CP-15, CP-20, CP-25) with different mass ratio were successfully fabricated by a simple blending and phase inversion process. Their electrochemical properties as separators in assembled supercapacitor were evaluated. Fourier transform infrared spectroscopy and x-ray diffraction analysis indicate that intermolecular and intramolecular hydrogen bonding existed between cellulose and polyvinyl alcohol of the CP films. Compared with other CP films, the CP-20 film shows higher mechanical strength (28.02 MPa), better wettability (79.06°), higher porosity (59.69%) and electrolyte uptake (281.26 wt%). These properties of CP-20 are expected to show better electrochemical performance as separator. Indeed, the electrochemical tests, including electrochemical impedance spectroscopy, cyclic voltammetry, galvanostatic charge discharge, demonstrate that the SC-20 capacitor (with CP-20 as separator) shows the lowest equivalent series resistance of 0.57 Ω, the highest areal capacitance of 1.98 F cm-2 at 10 mV s-1, specific capacitance of 134.41 F g-1 and charge-discharge efficiency of 98.62% at 1 A g-1 among the four capacitors with CP films as separators. Comparing the assembled SC-40 and SC-30 with two commercial separators (TF4040 and MPF30AC) and SC-PVA with Polyvinyl alcohol (PVA) separator, the CV and GCD curves of SC-20 maintain the quasi rectangular and symmetrical triangular profiles respectively at different scan rates in potential window of 0-1 V. SC-20 exhibits the highest value of 28.24 Wh kg-1 at 0.5 A g-1 with a power density of 0.26 kW kg-1, and 13.41 Wh kg-1 at 10 A g-1 with a power density of 6.04 kW kg-1. SC-20 also shows the lowest voltage drop and the highest areal and specific capacitance. Moreover, SC-20 maintains the highest value of 86.81% after 4000 cycles compared to 21.18% of SC-40, 75.07% of SC-30, and 6.66% of SC-PVA, showing a superior rate capability of a supercapacitor. These results indicate that CP films can be served as promising separators for supercapacitors.

20.
Front Microbiol ; 11: 596440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281794

RESUMEN

CircRNAs are a recently well-known regulator that mediates a variety of biological processes. Cryptococcus neoformans is an environmental fungal pathogen that can cause fatal cryptococcal meningitis in immunocompromised individuals. However, the involvement of circRNA in cryptococcal infection remains unclear. In this study, high-throughput microarray was performed to identify the circRNA expression profile in cryptococcal meningitis patients. Circ_0001806 was significantly decreased in cryptococcal meningitis individuals. Then the effects of circ_0001806 and its interaction with miRNAs were explored in vivo and in vitro. The knock-down of circ_0001806 led to higher fungal infection and shorter survival in an experimental murine cryptococcosis model. Transcriptome analysis showed that decreased circ_0001806 regulated pathways related to the host antimicrobe response in T cells. Furthermore, in vitro experiments showed that circ_0001806 positively modulates ADM level, decreasing cell apoptosis and G1S arrest in T cells. Finally, we found circ_0001806 exerted its effects by sponging miRNA-126 in T cells. Taken together, our results reveal the role of circRNA-1806/miRNA-126 in the regulation of cell cycle and apoptosis in cryptococcal infection and can provide a new insights of the pathogenesis of cryptococcal infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA